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ABSTRACT Mutable value semantics is a programming discipline that upholds the independence of values to support local
reasoning. In the discipline’s strictest form, references become second-class citizens: they are only created implicitly, at function
boundaries, and cannot be stored in variables or object fields. Hence, variables can never share mutable state. Unlike pure
functional programming, however, mutable value semantics allows part-wise in-place mutation, thereby eliminating the memory
traffic usually associated with functional updates of immutable data.
This paper presents implementation strategies for compiling programs with mutable value semantics into efficient native code.
We study Swift, a programming language based on that discipline, through the lens of a core language that strips some of
Swift’s features to focus on the semantics of its value types. The strategies that we introduce leverage the inherent properties of
mutable value semantics to unlock aggressive optimizations. Fixed-size values are allocated on the stack, thereby enabling
numerous off-the-shelf compiler optimizations, while dynamically sized containers use copy-on-write to mitigate copying costs.
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1. Introduction
Software development continuously grows in complexity, as
applications get larger and hardware more sophisticated. The
essential principle required to build correct systems in the face
of growing complexity is local reasoning, described by O’Hearn
et al. (2001) as follows:

To understand how a program works, it should be
possible for reasoning and specification to be con-
fined to the cells that the program actually accesses.
The value of any other cell will automatically remain
unchanged.

The ability to reason locally about program semantics is also
critical for efficiency as it eliminates the need for conservative
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assumptions about access to the memory. Unfortunately, local
reasoning is often lost in a shared memory model, as side-
effectful operations in one part of the program impact seemingly-
unrelated locations.

Pure functional programming addresses this problem by sim-
ply outlawing mutation. Unfortunately, this paradigm may fail
to capture the programmer’s mental model, or prove ill-suited
to express and optimize some algorithms (O’Neill 2009), due
to the inability to express in-place mutation. For instance, if
x is a binary tree, an assignment that in Java could be written
x.left.left.right = v must be translated into a cumbersome
composition of updates x’ = updateLeft(x, updateLeft(x.left
, updateRight(x.left.right, v))), which can only match the
algorithmic efficiency of the original formulation through opti-
mizer heroics that eliminate unnecessary copies of temporary
data (Johann 2003).

Another way to uphold local reasoning is to use first-class
references, but tame their aliasing. Newer programming lan-
guages have blended ideas from ownership types (Clarke et al.
2013), type capabilities (Haller & Odersky 2010), and region-
based memory management (Tofte et al. 2004), offering more
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freedom to write efficient and type-safe programs. These ideas,
however, invariably complicate type systems with mechanisms
like named lifetimes, which significantly raise the barrier to
entry for inexperienced developers (Turner 2017).

1 fn longer_of(x: String , y: String) −> String {
2 if x.len() > y.len() { x } else { y }
3 }
4

5 fn report_longest(x: String , y: String) {
6 let z = longer_of(x, y);
7 println !("longest of {:?} and {:?} is {:?}",
8 x, y, z); // <− error
9 }

Consider the Rust (Matsakis & Klock 2014) example above.
A simple function longer_of returns the longer of two character
strings. Its caller, report_longest, also simple, is ill-typed. The
compiler complains that x and y have been moved (into the call
to longer_of), and can no longer be used. Ending variable life-
times early is part of Rust’s strategy for ensuring memory safety
without creating expensive copies at function call boundaries.
These goals are difficult to reconcile, so it’s perhaps not surpris-
ing that simple-looking code exposes language complexity.

Mutable value semantics (MVS) sits at third point in the
design space where both goals are satisfied and mutation is
supported, without the complexity inherent to flow-sensitive
type systems. The key to this balance is simple: MVS does not
surface references as a first-class concept in the programming
model. As such, they can neither be assigned to a variable nor
stored in object fields, and all values form disjoint topological
trees rooted in the program’s variables.

The reader may justifiably wonder whether a discipline with
these restrictions is expressive enough to write efficient, non-
trivial programs. We note that a large body of software projects
across multiple languages already answer this question empiri-
cally, such as the Boost Graph Library (Siek et al. 2002), a col-
lection of generic components (Stepanov & Rose 2014) for com-
putations on graphs in C++, and Swift for TensorFlow (Saeta
et al. 2021), a high-performance platform for machine learn-
ing. Further, we observe that well-established programming
languages have adopted MVS at the core of their semantics,
such as R (R Core Team 2020) and Swift (Apple Inc. 2021), for
safety and/or efficiency.

In more detail, Swift is a modern general-purpose program-
ming language, used in a broad spectrum of applications. Its
standard library offers a rich collection of reusable components
based on MVS, while striving to show competitive performance
against comparable libraries in programming languages such
as C, C++ and Rust. The language is translated to native code
using an LLVM (Lattner & Adve 2004) backend.

After a brief introduction of the core tenets of MVS (Sec-
tion 2), we explore some of these implementation strategies and
make the following contributions:

– We propose a core language called Swiftlet, a subset of
Swift focused exclusively on MVS. We introduce Swiftlet
through a series of examples (Section 3) and formalize its
semantics (Section 4).

– We discuss a compiler for Swiftlet that supports the cre-
ation of zero-cost abstractions (Section 5).

– We present a handful of compiler optimizations relying on
local reasoning and leveraging runtime knowledge to elide
unnecessary copies (Section 6).

– We report performance measurements on handwritten and
randomly generated programs with varying numbers of mu-
tating operations, comparing results between Swift, Swift-
let, Scala, and C++ to demonstrate the benefits of MVS
over functional updates (Section 7).

2. Mutable value semantics

Before we delve deeper into the details of a language implemen-
tation, we ought to define precisely what MVS is and how it
differs from the more widespread reference semantics.

2.1. Primitive and compound types

Popular object-oriented programming languages have converged
on a common mutation model that distinguishes between so-
called “primitive” or “built-in” types (typically numeric types)
and “compound” types (typically arrays and classes). Variables
of primitive types are independent: the value assigned to a
variable of a primitive type cannot change due to an operation
on another variable in the program. In contrast, variables of
compound type may share state with other variables. Hence, the
value assigned to a variable of a compound type can change due
to an operation on another variable.

1 class Vec2 { int x, y; } // Primitive fields
2 class Rect { Vec2 pos , dim; } // Compound fields
3

4 int i1 = 2; // Same pattern with
5 Vec2 v1 = new Vec2(i1 , i1); // − int: primitive
6 Rect r1 = new Rect(v1 , v1); // − Vec2: compound
7 Rect r2 = r1;
8

9 r2.dim.x += 4 // Mutates r2
10 System.out.println(r1.pos.x) // Now 6: r1 changed
11 System.out.println(r1.pos.y) // 2: no change

Listing 1 Compound types in Java have reference semantics

Consider the Java program above, which illustrates the dis-
tinction in full detail. In lines 1 and 2, it declares compound
types Vec2 and Rect, representing 2d vectors and rectangles,
respectively. In line 5, both primitive-type fields of v1 are initial-
ized to the value of the same variable. In line 6, both compound-
type fields of r1 are initialized with v1, causing r1.pos to share
state with r1.dim. In line 7, assignment causes r1 to share state
with r2. After line 7, the contents of the program’s memory can
be depicted as in Figure 1a.

Line 9 performs a mutation, growing the x dimension of r2
by 4. Line 10 shows that the mutation has had a non-local effect,
changing r1.pos, a distinct variable of compound type. Line
11 shows that, by contrast, the mutation has not changed the
value of the field r1.pos.y, a distinct variable of primitive type,
initialized in the same way.

This difference in behavior demonstrates that Java has two
different kinds of mutation semantics: one for “primitive” types
and another for “compound” types.
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Figure 1 Contents of the memory of a program involving compound types. Arrows represent references and boxes represent
whole/part relationships.

2.2. Value and reference semantics
We can decouple these two mutation semantics from the ques-
tion of whether a type is “primitive” or “compound”. In fact,
one could argue that it makes more sense for a notional vector
value like Vec2 to behave just like a scalar int. A more gen-
eral distinction separates types with reference semantics, which
behave like Java’s compound types, from those with value se-
mantics, which behave like Java’s primitive types. Conceptually,
two variables of a reference type can share mutable state, but
two variables of a value type cannot.

Because the difference in behavior always involves mutation,
an immutable type can be said to have value semantics trivially.
Mutation by assigning a whole new value to a variable can be
rewritten as binding a new variable, with no mutation, so is triv-
ially equivalent. Therefore, to distinguish the nontrivial cases of
interest, we say that a value type has mutable value semantics
when its parts can be mutated in-place, without reassigning a
variable of the type.

1 struct Vec2 { var x: Int , y: Int }
2 struct Rect { var pos: Vec2 , dim: Vec2 }
3

4 var i1 = 2
5 var v1 = Vec2(x: i1 , y: i1)
6 var r1 = Rect(pos: v1, dim: v1)
7 var r2 = r1
8

9 r2.dim.x += 4 // Mutates r2
10 print(r1.pos.x) // Prints 2: r1 unchanged
11 print(r1.pos.y) // Prints 2

Listing 2 Swift has compound types with value semantics

Consider the Swift program above, a direct transliteration of
the Java code from Listing 1, but using only types with mutable
value semantics. In Swift, structs are value types, so after line 6,
r1.pos and r1.dim do not share state.

Figure 1b depicts the contents of the program’s memory after
line 7. Note that we use nesting rather than arrows to represents
relationships between values and their parts, because values
never share parts. Unlike in Java, the dimensions of r2 are
independent from those of r1. Hence, the mutation of r2 at line
9 does not propagate to r1, as shown by the print statement at
line 10.

2.3. Spooky action at a distance
Our Java example demonstrates how programming with refer-
ence types implicitly introduces aliasing—a condition where

two or more live variables refer to the same memory location—
every time a variable is passed to a function or assigned to
another variable. Unfortunately, leaving alias creation implicit
in the language creates a collection of problems (Noble et al.
1998) that we informally dub spooky action at a distance.1 In
short, neither humans nor machines (e.g., optimizing compilers)
can reason locally about mutation semantics in the presence of
aliases.

Consider the so-called “signing flaw”, a security vulnerabil-
ity discovered in a previous version of the Java platform that
allowed untrusted applets to escalate access into the virtual ma-
chine (Vitek & Bokowski 2001). The vulnerability was caused
by a reference leak, giving the attacker the means to mutate the
system’s internal list of signatures. The following snippet is a
simplified excerpt of the flawed implementation:

1 public class Class {
2 public Identity [] getSigners () {
3 return this.signers;
4 }
5 private final Identity [] signers;
6 }

The field signers is exposed via the method getSigners. An
attacker could thus obtain an alias on the list of trusted signers
and alter it as they see fit. Although the field is private final
and is thus neither accessible to clients nor reassignable, nothing
prevents a method from accidentally leaking a reference to
the object it holds, and through that reference, the list can be
mutated (Potanin et al. 2013).

The standard prescription for accidental aliasing in Java is
the manual insertion of defensive copies, but that is hardly an
adequate cure: a missed defensive copy is a possible security
vulnerability, an extra copy a source of inefficiency. Alias pre-
vention mechanisms like ownership types (Clarke et al. 2013)
and confined types (Vitek & Bokowski 2001)) are safer, but re-
quire complex annotations in code. Even when applied correctly,
defensive copies must be made conservatively, without dynamic
knowledge of how the objects will ultimately be used—for ex-
ample, whether they are eventually mutated, or even inspected—
and thus impose a heavy performance tax. Below the level of the
programming model, the mere possibility of mutation through a
shared reference creates additional costs (Shaikhha et al. 2017).

Optimizing compilers such as GCC and LLVM go to sig-
nificant lengths to “model the heap” to prove references and
pointers do not alias. In cases where uniqueness cannot be
1 With apologies to Einstein.
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proven, code generation becomes pessimistic. Examples of
inhibited optimizations include: writing and reloading regis-
ters from memory, disabling loop-invariant code motion, and
preventing vectorization.

By contrast, programming with value types rules out alias-
ing by construction, making it easy to reason about mutation
and eliminating this class of bugs. Furthermore, a variable of
value type can live exclusively in registers—even when it is
compound, and across opaque function boundaries—allowing
a compiler to reliably vectorize without modeling the heap. In
other words, programming with values yields predictable per-
formance without risking regression by changing code in a way
that would cause optimizers to fall short, due to conservative
assumptions.

2.4. The murky depths of ambiguous relationships
Implicit aliasing is not the only problem introduced by pervasive
reference semantics: it has also led to a widespread fallacious
mental model among programmers. Consider the routine ques-
tion faced by object-oriented developers of whether copying,
mutability, or comparison should be “deep” or “shallow” in the
context of the following Java example:

1 interface ClickListener {
2 void clickOccurred ();
3 }
4

5 public class Button {
6 private Point position;
7 private ClickListener clickHandler;
8 }

It would be inappropriate to “shallow copy” a Button–a dis-
tinct copy of a Button instance needs a distinct copy of its
position. If Button is “deep-copied”, though, its clickHandler
will be copied too, which is almost certainly inappropriate. Even
if a “deep” copy were appropriate for the clickHandler, we’d
have to ask, “how deep?” Since the details of the clickHandler
are unknown, there is no answer. In fact, the exact same prob-
lem applies to both mutability and comparison: neither “deep”
nor “shallow” will “cut it.”

Each reference in this example represents a relationship be-
tween the Button and some other object. If we look closely at the
nature of those relationships, we can see that there’s something
special about the Button’s relationship to its position that makes
“deep” treatment appropriate: it connects a whole to its part.

While our initial example clearly demonstrates that the idea
of “deep” or “shallow” copying is inadequate, recognizing the
significance of whole-part relationships suggests that the idea
itself is fallacious. Since a correct copy creates an independent
but equivalent value of an instance and all of its parts, it would
be fair to say there are no correct “deep” or “shallow” copies,
only “copies”.

This widespread misunderstanding would not exist but for
the ambiguous meaning of stored references. It is striking, then,
that despite the importance in UML of distinguishing “composi-
tion” and “aggregation” from mere “association”, and despite
UML’s profound influence on object-oriented programming, the
whole-part relationship is not surfaced by most object-oriented
languages.

Aside from representing arbitrary relationships, stored refer-
ences hav a second role: they provide access to the related data.
In fact it is this access, combined with mutation, that leads to the
“spooky action” discussed earlier, because when a reference is
copied, access goes along with the relationship. It is interesting
to ask, then, what would happen if we decoupled those roles?
As it turns out, MVS does just that.

In MVS, composition always represents a whole-part rela-
tionship. This direct representation of composition benefits
more than code clarity. The compiler is able to synthesize fun-
damental, tedious, and error-prone operations such as copying,
equality and hashing. More importantly, it can automatically
propagate immutability. This last capability has a powerful and
non-obvious consequence: given a mutable type, application
of a simple ‘let’ to a declared instance, produces a correct im-
mutable instance. In reference-based languages such as Scala,
Objective-C, and JavaScript, where the whole-part relationships
are obscured, immutability is both more important—it is the
only route to local reasoning—and much harder to achieve. In
all of these languages it is common to see a separate immutable
type created for every mutable one. (Odersky & Moors 2009;
Bierema 2022).

2.5. Representing other relationships
Because whole/part relationships do not admit aliasing, they
always form a tree, with the parts of a compound type being its
children. It is reasonable to ask, then, how we can use mutable
value types to represent self-referential data structures, such as
doubly linked lists and directed graphs.

In fact, any arbitrary graph can be represented as an adja-
cency list. For example, a vertex set might be represented as
an array, each element of which contains an array of outgoing
edge destination indices. This approach can be seen as decou-
pling the two roles of first-class references: inner array elements
represent relationships without conferring direct access to the
related data, which is only available through the object of which
it is a part.2

Naturally, losing the ability to directly access data through
references changes the way programs are written. For exam-
ple, traversing an arbitrary graph requires access to the whole
graph at each step, rather than just a single vertex and its out-
going edges. In exchange, we get improved expressiveness,
correctness, and even performance (Siek et al. 2002).

2.6. Semantic regularity and generic programming
Uniform mutation semantics makes it possible to create user-
defined mathematical abstractions that behave like built-in nu-
meric types. To illustrate, we can add a += operator to the Vec2
type introduced earlier.3 Here, applying the mutating operator
+= to v1 affects only the value of v1, and not that of v2, just as if
they were integers.

1 struct Vec2 {
2 var x: Int , y: Int

2 We note that the idea of dissociating the knowledge of a location from the
right to access is central to capability-based approaches (Smith et al. 2000).

3 The inout keyword seen here expresses argument mutation, and is explored
in detail in Section 3.
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3 static func += (a: inout Self , b: Self) {
4 a.x += b.x
5 a.y += b.y
6 }
7 }
8 var v1 = Vec2(x: 2, y: 2)
9 var v2 = v1

10 v2 += Vec2(x: 1, y: 0)
11 print(v1) // Vec2(x: 2, y: 2)
12 print(v2) // Vec2(x: 3, y: 2)

Semantic uniformity is a prerequisite for generic program-
ming, the discipline of realizing algorithms and data structures
so they work in the most general setting possible, without loss
of efficiency (Stepanov & Rose 2014).4 Indeed, it becomes
difficult to even describe the semantics of an algorithm if any
part of it can have non-local effects.

3. Swiftlet
Swiftlet is a subset of Swift, focusing on value types and dis-
carding all features that are not essential to their description.
Our language only features structs (i.e., compounds of het-
erogeneous types), arrays (i.e., dynamically sized collections
of homogeneous data), functions, and numeric (integer and
floating-point) values. The result is a language whose complete
operational semantics fits a single page (Section 4).

A program is described by a sequence of struct declarations,
followed by a single expression denoting an entry point (i.e.,
the contents of the main file in a regular Swift program).

A variable is declared with the keyword var followed by
a name, an optional type annotation, an initial value, and the
expression in which it is bound. A constant is declared similarly,
with the keyword let. Naturally, a variable can be mutated or
reassigned whereas a constant cannot.

1 var foo: Int = 4;
2 let bar = foo;
3 print(bar) // Prints 4

A struct is a compound type composed of zero or more
fields. Each field is typed explicitly with an annotation and
associated with a mutability qualifier (let or var) specifying
whether it is constant or mutable. Fields can be of any type,
but—for simplicity only—type definitions cannot be mutually
recursive. Hence, all values have a finite representation.

1 struct Vec2 { ... };
2 var v = Vec2(x: 4, y: 2);
3 print(v.y) // Prints 2

As all types have value semantics, values form disjoint topo-
logical trees rooted at variables or constants. Conceptually, an
assignment is always a copy of the right operand5 and does not
create an alias. In the program below, u is assigned a copy of
v’s value, so the update of u’s second component in line 4 does
not modify v.

1 struct Vec2 { ... };
2 var v = Vec2(x: 4, y: 2);

4 Generic programming as described by its originators depends on the concept
of regularity (Stepanov & McJones 2009), a refinement of value semantics.

5 We discuss how the language implementation eliminates unnecessary eager
copies in Section 6.

3 var u = v;
4 u.y = 8 // v = Vec2(x: 4, y: 2)
5 // u = Vec2(x: 4, y: 8)

Immutability applies transitively. All fields of a struct bound
to a constant are also treated as immutable by the type system,
regardless of their declaration. For example, the program below
is ill-typed because v.y denotes a constant, notwithstanding that
field having been declared with var.

1 struct Vec2 { ... };
2 let v = Vec2(x: 4, y: 2);
3 v.y = 8 // <− type error

Likewise, all elements of an array are constant if the array itself
is bound to a constant.

1 struct Vec2 { ... };
2 let a = [Vec2(x: 4, y: 2), Vec2(x: 5, y: 3)];
3 a[0].y = 8 // <− type error

Functions are declared with the keyword func followed by
a name, a list of typed parameters, a codomain, and a body.
Arguments are evaluated eagerly and passed by value. Functions
are allowed to be mutually recursive.

1 func fact(n: Int) −> Int {
2 n > 1 ? n ∗ fact(n: n − 1) : 1
3 };
4 fact (6) // Prints 720

To implement in-place part-wise mutation across function
boundaries, a parameter’s type is marked inout, which makes
the parameter mutable in the callee. Conceptually, an inout
argument is copied when a function is called and copied back
when that function returns.6

1 struct Vec2 { ... };
2 func translateX(v: inout Vec2 , d: Int) −> Void {
3 v.x = v.x + d
4 };
5 var v = Vec2(x: 4, y: 2);
6 _ = translateX(v: &v, d: 6);
7 print(v.x) // Prints 10

In the program above, the function translateX accepts an
inout parameter of type Vec2, which it is allowed to mutate.
The return type, Void, is Swiftlet’s unit type. The function is
called at line 6, effectively mutating the value of the vector v
across function boundaries. Note that the ampersand featured
in the call expression is not the “address-of” operator from
C/C++. Instead, it signals in code that the argument is to be
mutated—conceptually “copied out” of the callee upon return.

Of course, inout extends to multiple arguments, with one
important restriction: to prevent any writeback from being dis-
carded, overlapping mutations are prohibited. In other words,
inout arguments must have independent values. This Law of
Exclusivity (McCall 2017) creates a crucial optimization oppor-
tunity: it is safe to sidestep the conceptual copies by allowing
the callee to write the argument’s memory in the caller’s context.
In other words, inout argument passing can be implemented as
pass-by-reference without surfacing reference semantics in the
programming model.

Remark that inout parameters are reminiscent of (if not iden-
tical to) borrowing (Naden et al. 2012), as found in languages
6 The Fortran enthusiast may think of the so-called “call-by-value/return” policy.
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like Rust. The difference lies in the way uniqueness is guaran-
teed. Unlike generalized borrows, inout parameters are second-
class citizens: they have lexically-bounded lifetimes and must
“appear in person” (Strachey 2000). These restrictions ensure
that aliases can be prevented simply by verifying that the “path”
to a value (i.e., a list of member accesses and/or array subscripts)
never appears twice in inout arguments to a single function
call.7 If references were granted first-class status, the type sys-
tem would have to reason about the possible set of values that a
variable may have at a particular point in the program, as a path
alone would not be sufficient to identify the referred location.

One additional restriction applies to paths identifying ele-
ments of an array. The type system allows the same array to
be indexed more than once by inout arguments only if it can
conclude that the indices cannot overlap. For example, given
an array x, the expression swap(&x[0], &x[1]) is well-typed, but
swap(&x[f(0)], &x[1]) is not. In the second case, the type sys-
tem conservatively assumes that f(0) could be evaluated as any
value, including 1.

2

x:Int

5

y:Int

pos:Vec2

8

z:Int

(a) swapX(a: &v, b: &z)

2

x:Int

5

y:Int

pos:Vec2

8

z:Int

(b) swapX(a: &v, b: &v.y)

Figure 2 Visual representation of path uniqueness

We illustrate path uniqueness metaphorically. Imagine that
values are represented by nested boxes, where nesting denotes
a whole/part relationship. A path identifies a single box from
outside in. Whenever one appears as an inout argument, the
type checker paints the referred box with a color specific to that
argument’s position. At the end of the process, the program is
ill-typed if one box had to be painted with two different colors.

We give an example in Figure 2. Let swapX be a function
that accepts a vector and an integer as inout parameters—a and
b—and swaps in-place the value of the vector’s first component
with that of the second parameter.

1 func swapX(a: inout Vec2 , b: inout Int)
2 −> Void { ... };
3 var v = Vec2(x: 2, y: 5);
4 var z = 8;
5 swapX(a: &v, b: &z); // <− well −typed
6 swapX(a: &v, b: &v.y) // <− ill −typed

Line 5 creates the situation shown in Figure 2a. No box had
to be painted with two different colors: the call is well-typed.
Line 6, however, produces Figure 2b. The box representing v.y
was painted twice: the call is ill-typed.

A Swiftlet function must declare any variables that are to
be captured in its closure.8 If capture list is not provided, it

7 Note that, where x denotes an array of integers, a path of the form x[x[0]] is
a valid inout argument, even if x occurs twice. Each subscript operation can
be thought of as a function call, and in this case, the nested expression x[0] is
reduced to an index i before the callee gets exclusive access to a path x[i].

8 Closures with explicit capture lists have a different syntax in Swift. We
overlook that detail for simplicity.

is equivalent to a declaration of a zero-argument list with no
captures. The value of each capture is then copied from the
context surrounding its declaration, thus enforcing capture-by-
copy semantics, and each capture is immutable.

1 var x = 2;
2 func f(y: inout Int) −> Void {
3 [x] in // x is captured immutably
4 y += x;
5 };
6 f(y: &x);
7 print(x) // Prints 4

By contrast, Swift does not require captures to be explicitly
declared, and its implicit captures are by-reference, so closures
introduce reference semantics. Consider the following example,
which is well-typed in Swift but not in Swiftlet:

1 var x = 0;
2 func g(y: inout Int) −> Void { y += x };
3 g(y: &x) // <− error

The above program creates overlapping mutable accesses to
the same variable: the first obtained by capture, the second as
an inout argument, which violates the Law of Exclusivity. This
violation, however, is detected only at runtime. Since Swiftlet
captures only by copy, it guarantees statically that closures
uphold the Law of Exclusivity.

Drawing inspiration from linear type systems (Wadler 1990),
languages like Rust capture free variables from the environment
destructively. We refer to this policy as capture-by-move. Still
others use capture-by-reference, but encode side effects on the
environment into function types, essentially equipping the lan-
guage with a type-and-effect system (Rytz et al. 2013). Both
of these approaches to capture semantics introduce significant
language complexity.

Swift methods are defined to be equivalent to free functions
accepting an instance of the receiver struct as a first parameter.
Therefore, without loss of expressivity, methods are omitted
from Swiftlet for simplicity.

Although Swiftlet does not provide Swift’s support for
generic types—only arrays are generic—rudimentary polymor-
phism can be achieved via type-erased containers. An instance
of type Any can store a value of any type, allowing the creation
of type-erased data structures with value semantics.

1 struct Pair {
2 var _1: Any
3 var _2: Any
4 };
5

6 let p = Pair(_1: 4 as Any , _2: [7] as Any);
7 p._2 = p as Any; // Not a reference loop!
8

9 print(p) // Pair(_1: 4, _2: Pair(_1: 4, _2: [7]))

Line 1 declares Pair, a type that stores two values, each of
arbitrary type. Line 6 creates p, a Pair storing an integer 4 as
its first element and an array [7] as its second.9 In line 7, p._2
is assigned the value of p. Finally, line 9 prints the contents of
p. Note that, because Any has value semantics, line 7 does not

9 Unlike Swift, Swiftlet requires an explicit “as” cast to store an arbitrary value
as Any. Further, the language does not provide a safe "downcast" from Any.
An invalid cast results an error at runtime.
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cause the pair to refer to itself, avoiding an infinite recursion in
line 9. Instead, the value of p has been copied into p._2.

4. Formal definition
This section introduces Swiftlet formally. We start with its
syntax and present a first description of its operational semantics
in the form of big-step inference rules (a.k.a. natural semantics).
This semantics is intended to describe the high-level user model
and provide a formal framework for discussing optimization
strategies.

Then, we present the Swiftlet’s static semantics, and show
how its type system guarantees uniqueness of inout arguments
at function boundaries.

Although natural semantics is convenient for describing ob-
servable behaviors (Leroy & Grall 2009), its inability to distin-
guish failure from non-termination makes it less well-suited to
the study of soundness properties. Hence, to demonstrate the
guarantees provided by our static semantics, we finally present a
second operational semantics in the form of small-step inference
rules.

4.1. Notations
We use horizontal bar notation to denote sequences of terms.
For instance, x expands to x1, . . . , xk for some k. We write ε for
the empty sequence and, for the sake of syntactic regularity, we
assume that x1, . . . , xk is an empty sequence if k = 0. We write
|x| for the length of the sequence x. We write x : y meaning
x1 : y1, . . . , xk : yk.

Let f : A→ B be a function, dom( f ) denotes its domain. If
f is a partial function, then dom( f ) is the subset A′ ⊆ A for
which f is defined. We write f = [⊥]A→B to represent a partial
function f : A → B with dom( f ) = ∅. We write f = [a 7→
b]A→B to represent a partial function f such that f (a) = b
with dom( f ) = {a}. We write f = [a 7→ g(a) | p(a)]A→B
for the function that returns g(a) for all a ∈ A that satisfy
a predicate p. For example, [i 7→ −i | i ∈ Z ∧ i < 0]Z→Z

denotes a function that maps each negative integer to its absolute
value. We omit the subscript when the function’s domain and
codomain are obvious from the context. We write f [a 7→ b] for
the function that returns b for a and f (x) for any other argument.
For instance, if f (0) = 1 and f (1) = 2, then ( f [0 7→ 3])(0) =
3 and ( f [0 7→ 3])(1) = 2. We write f [a 7→ ⊥] for the function
that is not defined for a and returns f (x) for any other argument.
Given f : A→ B and g : A→ B, we write f [a 7→? g(a)] for
the function f [a 7→ g(a)] if a ∈ dom(g), or f otherwise.

Let e be a term and σ a set of substitutions represented as a
partial function from variables to terms, we write e[/σ] for the
term obtained by applying the substitutions σ to e, renaming
free variables as necessary. For instance, if e = λa.ab and
σ = [b 7→ c], then e[/σ] = λa.ac.

4.2. Syntax
Figure 3 presents the formal syntax of Swiftlet. A program
g is a sequence of structure declarations followed by a single
functional term acting as its entry point.10 A structure is de-

10 Named functions are declared in the body of the entry point

integer c

name x, s

context µ, φs : X → M×V

prog. g ::= d e

struct d ::= struct s { b };

qual. m ::= let | var

bind. b ::= m x : τ

arg. a ::= &r | e

expr. e ::= e; e | b = e in e | r = e | [e] | r | v

| s(e) | e(a) | e ? e : e | e as τ

| func x (x : p)→ τ {[x] in e} in e

param. p ::= inout τ | τ

type τ ::= (p)→ τ | [τ] | s | Z | Any | ()

path r ::= e.x | e[e] | w

value v ::= λ(x : p, e) | φs | [v] | box(v) | c

lvalue w ::= w.x | w[c] | x

Figure 3 Formal syntax of Swiftlet

scribed by a unique global name and a sequence of property
declarations. A property is declared by a binding m x : τ where
m denotes its mutability, x identifies its name, and τ specifies
its type.

Other types include integer (written Z)11, homogeneous
arrays (written [τ] where τ is the element type), function types
(written (p) → τ, where τ is the return type and each p is a
parameter type potentially qualified by inout), the existential
container type (written Any), and the unit type (written ()).

Functions can be recursive (although not hoisted), but we pro-
scribe mutually recursive type declarations. For the sake of sim-
plicity, Swiftlet requires all named declarations (i.e., structures,
properties, parameters, and local bindings) to have a unique
name. This simplification does not restrict the expressiveness
of our language, as name conflicts can always be eliminated via
α-conversion. Further, function declarations always feature a
capture list, even when it is empty.

Expressions are composed out of array literals, structure
instantiations, function calls, conditionals, function declarations,
binding declarations, assignments, sequences, casts, values, and
paths. The latter are at the heart of mutable value semantics. In
broad strokes, a path denotes access to a value or part thereof. It
can be the name of a binding or any expression suffixed by either
a dotted accessor (e.g., e.n) or a bracketed index identifying a
specific element in an array (e.g., e1[e2]).

Borrowing from C parlance, path expressions starting with
a name are called lvalues, as they may appear on the left hand
side of an assignment. Only mutable lvalues can serve as ar-

11 We exclude floating-point values from the formal definition.
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guments to inout parameters. As mentioned in the previous
section, immutability applies transitively, meaning that an lvalue
is immutable if any component of its path is. Note: a bracketed
lvalue can be mutable even when the expression of its index is
immutable. Because 0 without enclosing brackets is not a path
component, its immutability does affect that of x[0], which is
only immutable if x is an immutable binding.

The sequence operator “;” is left associative, that is a; b; c is
equivalent to (a; b); c. For clarity, the scope of a declaration is
introduced explicitly in the formal syntax: binding and function
declarations are always trailed by another expression, which
represents their scope. For instance, x in the assignment x = 2
is bound in var x : Z = 1 in ( f (x); x = 2), but it is free
in both x = 2; var y : Z = 1 in f (x) and var y : Z =
1 in f (y); x = 2. Scopes are used to determine the lifetime of
a particular value and reclaim memory.

We bring the reader’s attention to a handful of additional dif-
ferences between Swiftlet’s concrete and formal syntax. First,
for the sake of concision, the formal syntax does not use argu-
ment labels in function calls or structure literals. For instance, a
call f(y: &x) in the concrete syntax is written f (&x) formally.
Second, the formal syntax lets bindings appear at any position in
an expression. For instance, let x = let y = 1 in y in f (x) is
formally valid, yet it is ill-formed in the concrete syntax. More
generally, any expression can appear in a binding’s initializer,
including assignments. This difference, however, does not raise
the expressiveness of the formal syntax above that of its concrete
counterpart, as side-effectful expressions can be represented by
closures with inout arguments.

4.3. Natural semantics
Let X be the set of local names represented by the metasyn-
tactic variable x and V the set of values represented by the
metasyntactic variable v. Let M = {let, var} be the set of mu-
tability qualifiers. A context µ is a partial function X → M×V
mapping each local name to its mutability anb value.

Figure 4 presents the natural semantics of Swiftlet with two
judgments. The first (∆, µ ` e ⇓R µ′, v) reduces an expression
e to a value v, where ∆ is a set of structure declarations, µ maps
the bindings in scope to their respective value and mutability,
and µ′ records the side effects of the evaluation. The second
judgment (∆, µ ` r ⇓L µ′, m w) operates similarly for reduc-
ing a path r to an lvalue w, qualified by a mutability m. The
evaluation of a program g starts with a set ∆ populated with
the structure declarations defined in g and an empty context
µ = [⊥]. It either concludes with a final value v, or never
terminates, or fails because of a runtime error, such as an invalid
cast or an out-of-bound array access.

Because the purpose of this semantics is to understand the
high-level behavior of Swiftlet, we purposely do not model all
possible typing errors in the natural semantics.12 Nonetheless,
we represent path mutability because that property is leveraged
in Section 6 to implement program optimizations.

Bindings Binding declarations are reduced by E-BINDING,
which first evaluates the initializer expression e1. The resulting

12 We present static semantics in the next section.

value is copied and used to extend the evaluation context with a
new binding before evaluating the binding’s scope expression e2.
The binding is eventually removed from the evaluation context,
encoding the fact that the binding goes out of scope.

Copies are expressed explicitly by calls to a helper function
copy. At an abstract level, copy is equivalent to the identity (i.e.,
∀v, copy(v) = v). In a concrete implementation, however, it
models the operations required for cloning a value.13

Structures and arrays Structure literals are reduced by
E-STRUCTLIT, which starts by evaluating the constructor’s argu-
ments. Notice that an argument ei is reduced in the context µi−1
that results from the reduction of its predecessor, from left to
right. Once all arguments have been evaluated, a new instance
is built as a partial function φ that maps each property to a copy
of its corresponding value, using the declaration stored in ∆ to
determine each property’s mutability.

Example 4.1. Let ∆ = {struct A{var x : τ, let y : τ}} and
µ be an arbitrary context. The evaluation of A(3, 4) in ∆, µ
results in a value φA = [x 7→ var 3, y 7→ let 4].

The rule E-ARRAYLIT operates similarly for array instances.
The value of each element is evaluated, from left to right, to
build a sequence [v1, . . . , vk] representing the array. Unlike
structure properties, array elements do not require separate
mutability tracking because an element’s mutability is simply
that of the array.

Paths Paths can be reduced as either values or lvalues, de-
pending on their position in an expression. The rules E-NAME,
E-PROP, and E-ELEM describe reduction as values and are
straightforward: E-NAME looks up for a specific binding in
the evaluation context, E-PROP reduces the base of the path as
structure and looks up a specific property, and E-ELEM reduces
both the base and index of the path to select a specific element
in an array instance.

Reduction as lvalues is similarly described by the rules
P-NAME, P-PROP, and P-ELEM, with one difference. Recall that
lvalues are reduced along with their mutability, as defined by the
judgment for ⇓L, so that our semantics can model immutability
violations. The rule P-PROP reads mutability information from
the context µ by the means of a helper function get:

get(µ, x) = µ(x)
get(µ, w.x) = get(µ, w)(x)

get(µ, w[c]) = get(µ, w)c

The mutability of a property depends on both its declaration
and on the mutability of the containing instance. Formally, that
is represented by min(m, m′) in the premises of the rules, where
let < var.

Assignments The rule E-ASSIGN first reduces the path on the
left hand side as a mutable lvalue, then reduces the right hand
side as a value. Since both evaluations can introduce side effects,
the context µ is threaded from one to the other.

13 A formal definition is presented in Section 4.5.
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∆, µ ` e ⇓R µ′, v

E-NAME
µ(x) = m v

∆, µ ` x ⇓R µ, v

E-PROP

∆, µ ` e ⇓R µ′, φs φs(x) = m v

∆, µ ` e.x ⇓R µ′, v

E-ELEM

∆, µ ` e1 ⇓R µ′, [v1, . . . , vk]
∆, µ′ ` e2 ⇓R µ′′, c 0 ≤ c < k

∆, µ ` e1[e2] ⇓R µ′′, vc+1

E-INOUT

∆, µ ` r ⇓L µ′, var w

∆, µ ` &r ⇓R µ′, w

E-BINDING

∆, µ ` e1 ⇓R µ′, v1 ∆, µ′[x 7→ m copy(v1)] ` e2 ⇓R µ′′, v2

∆, µ ` m x : τ = e1 in e2 ⇓R µ′′[x 7→? µ′(x)], v2

E-ASSIGN

∆, µ ` e ⇓R µ′, v ∆, µ′ ` r ⇓L µ′′, var w

∆, µ ` r = e ⇓R set(µ′′, w, copy(v)), [⊥]

E-STRUCTLIT
1≤i≤k︷ ︸︸ ︷

∆, µi−1 ` ei ⇓R µi, vi
struct s {m1 x1 : τ1, . . . , mk xk : τk} ∈ ∆

∆, µ0 ` s(e1, . . . , ek) ⇓R µk, [xi 7→ mi copy(vi) | 1 ≤ i ≤ k]s

E-ARRAYLIT
1≤i≤k︷ ︸︸ ︷

∆, µi−1 ` ei ⇓R µi, vi

∆, µ0 ` [e1, . . . , ek] ⇓R µk, [copy(v1), . . . , copy(vk)]

E-FUNC

e′1 = e1[/σ] ∆, µ[x0 7→ let λ(x1 : p1, . . . , xk : pk, e′1[/σ′])] ` e2 ⇓R µ′, v
σ = [yj 7→ copy(vj) | (1 ≤ j ≤ h) ∧ µ(yj) = mj vj] σ′ = [x0 7→ func x0 (x1 : p1, . . . xk : pk)→ τ {[] in e′1} in x0]

∆, µ ` func x0 (x1 : p1, . . . xk : pk)→ τ {[y1, . . . , yh] in e1} in e2 ⇓R µ′[x0 7→? µ(x0)], v

E-CALL

∆, µ ` e0 ⇓R µ0, λ(x1 : p1, . . . , xk : pk, eb)

1≤i≤k︷ ︸︸ ︷
∆, µi−1 ` ai ⇓R µi, vi

σ = [xi 7→ copy(vi) | 1 ≤ i ≤ k] ∆, µk ` eb[/σ] ⇓R µ′, v

∆, µ ` e0(a1, . . . , ak) ⇓R µ′, copy(v)

E-SEQ

∆, µ ` e1 ⇓R µ′, v1 ∆, µ′ ` e2 ⇓R µ′′, v2

∆, µ ` e1; e2 ⇓R µ′′, v2

E-COND-T
∆, µ ` e1 ⇓R µ′, v1 v1 6= 0

∆, µ′ ` e2 ⇓R µ′′, v2

∆, µ ` e1 ? e2 : e3 ⇓R µ′′, v2

E-COND-F
∆, µ ` e1 ⇓R µ′, 0

∆, µ′ ` e3 ⇓R µ′′, v3

∆, µ ` e1 ? e2 : e3 ⇓R µ′′, v3

E-UPCAST

∆, µ ` e ⇓R µ′, v
typeof (v) 6= Any

∆, µ ` e as Any ⇓R µ′, box(v)

E-DOWNCAST

∆, µ ` e ⇓R µ′, box(v)
typeof (v) = τ

∆, µ ` e as τ ⇓R µ′, v

∆, µ ` r ⇓L µ′, m w

P-NAME
µ(x) = m v

∆, µ ` x ⇓L µ, m x

P-PROP

∆, µ ` r ⇓L µ′, m w get(µ′, w) = mw φs

φs(x) = mx vx m′ = min(mw, mx)

∆, µ ` r.x ⇓L µ′, m′ w.x

P-ELEM

∆, µ ` r ⇓L µ′, m w get(µ′, w) = mw [v1, . . . , vk]
∆, µ′ ` e ⇓R µ′′, c 0 ≤ c < k

∆, µ ` r[e] ⇓L µ′′, m w[c + 1]

Figure 4 Natural semantics of Swiftlet

Finally, the mutation is performed by calling a helper func-
tion set:

set(µ, x, v) = µ[x 7→ v]
set(µ, w.x, v) = set(µ, w, get(µ, w)[x 7→ v])

set(µ, w[c], v) = set(µ, w, [u1, . . . , uc−1, v, uc+1, . . . , uk])

where get(µ, w) = [u1, . . . , uk]

The resemblance of set to a functional update suggests that
there is a simple mapping from a program using MVS to one
that is purely functional. Unlike its rendition after such a purely-
functional transformation, our set has predictable performance:

it can always be implemented as an in-place update without
any optimizer heroics, since paths are known to always identify
unique and independent values.

Closures Function declarations are handled by E-FUNC. First,
it creates a substitution σ as a table mapping captured bindings
to their value in the context µ. These bindings are identified
explicitly using the capture list.

As mentioned in Section 3, recall that captures are immutable.
Hence, they can be substituted for their values directly, thus

Implementation Strategies for Mutable Value Semantics 9



encoding the function’s environment syntactically.14

To support recursive calls, the rule builds another substitu-
tion σ′ to map the name of the declared function to its own
declaration, or more precisely, to an expression that evaluates
to the same function. This strategy is reminiscent of the typi-
cal formalization of letrec in call-by-value λ-calculi (Reynolds
1998b, Chapter 11). In a nutshell, the rule unfolds the recursive
definition once and rewrites the function’s body so that further
unfoldings are carried out when a recursive call is evaluated. No-
tice, however, that the rewritten function has no captures. Any
captures in the original are substituted during the first unfolding,
so that the declaration cannot accidentally rebind a capture to
another value.

The second substitution σ′ is applied to the function’s body
to bind the function’s name in the context µ and evaluate the
expression e2, representing the scope in which the function is
defined. That binding is finally removed from the context in the
rule’s conclusion, effectively ending its lifetime.

Example 4.2 (Recursive function). Let a be a term denoting a
recursive function declaration:

a = func f (n : Z)→ Z{[] in n > 1 ? n ∗ f (n− 1) : 1}

Next, consider the expression a in f (2), which declares the
function f and immediately applies it to an integer argument.
That expression is evaluated by E-FUNC, which creates a sub-
stitution mapping f to an expression a in f . This substitution
is applied to the body of the function, resulting in a closure
λ(n : Z, (n > 1 ? n ∗ (a in f )(n− 1) : 1)).

In a call, if n is greater than one, the reduction of the first
branch of the conditional will trigger E-FUNC to evaluate a in f ,
effectively unfolding the recursive declaration one more time.
Otherwise, the second branch of the conditional will reduce
immediately as the value 1, ending recursion.

Function calls The rule E-CALL describes function calls. The
callee is evaluated first and must reduce to a closure of the form
λ(x : p, eb). Arguments are evaluated next, from left to right,
just as in E-STRUCTLIT and E-ARRAYLIT. The value of each
argument is then substituted for the corresponding parameter
name in the function’s body.

The call’s inout arguments are handled by inlining the lvalue
to which they reduce in the function’s body. Indeed, notice that
E-INOUT evaluates the path following the ampersand as an lvalue
rather than a value, using ⇓L rather than ⇓R.

Example 4.3. Let f (&a[a[0]].b) be a function call evaluated
by E-CALL, in a context µ = [ f 7→ let λ(x : inout Z, x =
42), a 7→ var [0, 1]]. The rule starts by reducing the callee, by
direct application of the E-NAME. Then, the inout argument
is handled by E-INOUT, triggering the application of P-ELEM

that eventually produces a mutable lvalue var a[1]. The latter is
inlined in the closure’s body, resulting in an expression a[1] =
42 that is evaluated in µ. The call finally concludes with an
updated context µ′ = [ f 7→ let λ(x : inout Z, x = 42), a 7→
var [0, 42]].

14 Alternatively, one could define a closure as a term λµ(x : p.e) where µ would
represent the environment. Such a strategy would let us represent mutable (yet
copied) captures.

Casts The rules E-UPCAST and E-DOWNCAST describe casts.
Upcasting a value wraps it in an existential container (Pierce
2002, Chapter 24), represented formally as a value box(v). Con-
versely, downcasting unwraps a container to extract its wrapped
value.

While upcasting always succeeds, downcasting fails unless
the value has the expected dynamic type. The dynamic type
is retrieved by a helper typeof , which returns the type encoded
into the low-level representation of existential containers.

4.4. Static semantics

Figure 5 presents the typing semantics of Swiftlet. Four typing
judgments are defined, relating to programs, function arguments,
paths and other expressions.

The program judgment ` g : τ initiates type checking,
creating a set ∆ of structure declarations. The program’s entry
point is then typed with a judgment ∆; Γ ` e : τ, stating that
the expression e has type τ in the context of ∆ and Γ. Most
rules are straightforward except for T-FUNC and T-CALL, which
check function declarations and function calls, respectively.

Function declarations Function declarations are typed in two
steps. The first creates a new context for type checking the body
expression. The second consists of type checking the expression
delimiting the scope of the declaration.

The rule T-FUNC starts by mapping each capture to its corre-
sponding type, treating them as immutable regardless of their
mutability in the surrounding context. Then, each parameter is
mapped onto its type and mutability, resulting in a typing con-
text Γ′′. Parameters are immutable unless qualified by inout.
This translation is expressed by a small helper function:

type(x : p) =

{
let τ if p = τ

var τ if p = inout τ

The context Γ′′ is finally extended by mapping the function’s
name onto its own type before type checking the body e1 in order
to handle recursive calls. The context Γ is extended similarly
to type check the expression e2 in which the newly declared
function is visible. In both instances, the binding representing
the function is considered immutable.

Function calls In function calls, the type system upholds
uniqueness of inout parameters by guaranteeing that the same
lvalue cannot be dereferenced from two different paths. This
test is defined via a relation ⊆ on argument expressions. Intu-
itively, ai ⊆ aj holds if both expressions are inout arguments
(i.e., paths prefixed by &) whose paths are either identical, or
ai’s is a subpath of aj’s. Formally, ⊆ is the minimal reflexive
and transitive relation that satisfies the following rules:15

15 The intuition of the operator relates to the size of the path rather than the set
of locations that it represents.
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` g : τ

T-PROGRAM
{d1, . . . , dk}, [⊥] ` e : τ

` d1; . . . ; dk; e : τ

∆; Γ `arg a : p

T-ARG
∆; Γ ` e : τ

∆; Γ `arg e : τ

T-INOUT
∆; Γ `path r : var τ

∆; Γ `arg &r : inout τ

∆; Γ ` e : τ

T-CONST

∆; Γ ` c : Z

T-BINDING
∆; Γ ` ex : τx

∆; Γ[x 7→ m τx] ` e : τ

∆; Γ ` m x : τx = ex in e : τ

T-READ
∆; Γ `path r : m τ

∆; Γ ` r : τ

T-ASSIGN
∆; Γ ` er : τ

∆; Γ `path r : var τ

∆; Γ ` r = er : ()

T-SEQ

∆; Γ ` e1 : τ1
∆; Γ ` e2 : τ2

∆; Γ ` e1; e2 : τ2

T-STRUCTLIT
1≤i≤k︷ ︸︸ ︷

∆; Γ ` ei : τi
struct s {m1 x1 : τ1, . . . , mk xk : τk} ∈ ∆

∆; Γ ` s(e1, . . . , ek) : s

T-ARRAYLIT
1≤i≤k︷ ︸︸ ︷

Γ, ∆ ` ei : τ

∆; Γ ` [e1, . . . , ek] : [τ]

T-COND
∆; Γ ` e : Z

∆; Γ ` et : τ ∆; Γ ` ee : τ

∆; Γ ` e ? et : ee : τ

T-CAST
∆; Γ ` e : τ′

∆; Γ ` e as τ : τ

T-FUNC
Γ′ = [yj 7→ let τj | 1 ≤ j ≤ h ∧ Γ(yj) = mj τj] Γ′′ = Γ′[xi 7→ type(pi) | 1 ≤ i ≤ k]
∆, Γ′′[x 7→ let (p1, . . . , pk)→ τ] ` e1 : τλ ∆; Γ[x 7→ let (p1, . . . , pk)→ τ] ` e2 : τ

∆; Γ ` func x(x1 : p1, . . . , xk : pk)→ τλ {[y1, . . . , yh] in e1} in e2 : τ

T-CALL

∆; Γ ` e : (p1, . . . , pk)→ τ

1≤i≤k︷ ︸︸ ︷
∆; Γ `arg ai : pi ∀1≤i≤k, ∀1≤j≤k, i 6= j =⇒ ai 6⊆ aj

∆; Γ ` e(a1, . . . , ak) : τ

∆; Γ `path r : m τ

T-BINDINGREF
Γ(x) = m x

∆; Γ `path x : m τ

T-LETELEMREF
∆; Γ ` e : [τ] ∆; Γ ` ec : Z

∆; Γ `path e[ec] : let τ

T-VARELEMREF
∆; Γ `path r : var [τ] ∆; Γ ` ec : Z

∆; Γ `path r[ec] : var τ

T-LETPROPREF
∆; Γ ` e : s

struct s {m1 x1 : τ1, . . . , mk xk : τk} ∈ ∆
∆; Γ `path e.xi : let τi

T-VARPROPREF
∆; Γ `path r : var s mi = var

struct s {m1 x1 : τ1, . . . , mk xk : τk} ∈ ∆
∆; Γ `path r.xi : var τi

Figure 5 Typing semantics.

&r ⊆ &r
&r ⊆ &r′

&r ⊆ &r′.n
&r ⊆ &r′

&r ⊆ &r′[e]

¬const(e) ∨ ¬const(e′)
&r[e] ⊆ &r[e′]

The last rule applies when the value of an array index is not
statically computable. It represents the restriction that fends
off cases where two arbitrary expressions would evaluate to
the same value, effectively producing two identical paths. For

simplicity, we assume here that const(e) holds if and only if e is
a constant. This choice is conservative and suffers from obvious
false-positives (e.g., x[0] ⊆ x[0 + 1] while 0 and 0 + 1 cer-
tainly denote different paths). The const predicate is, however,
amenable to higher degrees of precision and a more sophisti-
cate definition (e.g., akin to C++11’s constexpr specifier) could
include a wider range of expressions.

Casts Notice that T-CAST does not perform any test to guaran-
tee that the value e is indeed of type τ. Indeed, casts in Swiftlet
are completely dynamic and, therefore, errors are handled at
runtime. In other words, the correctness of cast a expression
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is not guaranteed statically and, therefore, is excluded from
Swiftlet’s definition of (static) type safety.

4.5. Small-step semantics

integer c

loc. l

name x, s

ptr π : L→ M×V

mem η : X → V

prog. g ::= d e

struct d ::= struct s { b };

qual. m ::= let | var

bind. b ::= m x : τ

arg. a ::= &r | e

expr. e ::= e; e | b = e in e | r = e | [e] | r | v

| s(e) | e(a) | e ? e : e | e as τ

| func x (x : p)→ τ {[x] in e} in e

| e; pop l

param. p ::= inout τ | τ

type τ ::= (p)→ τ | [τ] | s | Z | Any | ()

path r ::= e.x | e[e] | w

value v ::= λ(x : p, η, e) | [l]s | [l] | box(l)

| c | w

lvalue w ::= w.x | w[c] | lm

env. E〈·〉 ::= 〈·〉; e | b = 〈·〉 in e | lm = 〈·〉

| [v, 〈·〉, e] | s(v, 〈·〉, e) | v(v, 〈·〉, a)

| 〈·〉.x | 〈·〉[e] | v[〈·〉] | 〈·〉; pop l

| 〈·〉 as τ | 〈·〉

Figure 6 Formal syntax of Swiftlet’s small-step semantics

As mentioned earlier, the natural semantics we presented in
Section 4.3 is intended as a formal framework to understand
Swiftlet’s user model at a high level. We now introduce a second
semantics to study the language’s low-level operational details
and evaluate the soundness of its static semantics.

Figure 6 presents the formal syntax of Swiftlet’s small-step
semantics. That syntax naturally resembles the one shown in
Figure 3. The main differences relate to data representation.

In the small-step semantics, evaluation contexts are split into
two partial functions π and η. The first maps memory locations
to values while the second maps bindings to memory locations
and their mutability. In other words, the small-step semantics
models memory cells, whereas that detail is kept abstract in the

natural semantics. Hence, an evaluation context µ such that
µ(x) = m v in the natural semantics is represented in the small-
step semantics by a pair of functions π, η such that η(x) = l
and π(l) = m v.

Swiftlet’s operational semantics appears in Figure 7. We
define two evaluation operators. The first (−→) reduces expres-
sion to values, while the second (−→lv) reduces path expres-
sions to memory locations. Both are defined in a context ∆ and
map a program state onto its successor. A program state is a
triple that consists of a pointer store π, a stack of frames η and
an expression e. Together, π and η encode the program’s mem-
ory state, keeping track of the value of each accessible binding
in a given frame. For simplicity, we abstract over the size of a
value and assume an unbounded set of memory locations.

Example 4.4 (Memory state). Let π and η represent the mem-
ory state of a program such that π = [l1 7→ var 8, l2 7→ var 6]
and η = [x 7→ l1], [x 7→ l2, y 7→ l2]. In this state, only x is
accessible, as y does not appear in the youngest frame. Further-
more, x is known to be bound to a mutable memory location l1,
at which the value 8 is stored.

We borrow the notion of evaluation environment (a.k.a. eval-
uation context (Felleisen et al. 1987)) to specify the evaluation
order of an expression concisely. An environment E〈·〉 is a
meta-term representing a family of expressions where 〈·〉 is a
“hole” denoting the sub-expression that must be evaluated next.
For instance, b = 〈·〉; e denotes a family of binding declarations
where the value to bind is being evaluated. Then, we write E〈e〉
for the substitution of the environment’s hole for the expression
e and use ESS-CONTEXT to evaluate environments.

Value creation Structures and arrays are handled similarly.
Once the arguments have been evaluated, we create a sequence
of fresh memory locations that correspond to the “internal” rep-
resentation of the structure or array value. For a structure (rule
ESS-STRUCTLIT), each field’s mutability depends on the qual-
ifier of the corresponding property declaration. For instance,
given a program with a declaration struct A{var x : τ, let y :
τ}, evaluating an expression with type A results in a value
[l1, l2]A in a memory state π, η such that π(l1) = var v1 and
π(l2) = let v2. Hence, the pointer store can keep track of each
field’s mutability and detect illegal write accesses to immutable
values later on. On the other hand, memory locations corre-
sponding to array elements (rule ESS-ARRAYLIT) are always
qualified by var.

Closures are represented differently than in the natural se-
mantics. Specifically, rather than encoding environments syn-
tactically, by substituting captures for their values in the body
of the function, we encode them in the form of a frame ηλ that
is part of the closure’s value. Capture-by-copy is carried out
by helper function mkenv that creates new entries in the pointer
store for each captured symbol:
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∆ ` π; η; e −→ π′; η′; e′

ESS-CONTEXT
∆ ` π; η; e −→ π′; η′; e′

∆ ` π; η; E〈e〉 −→ π′; η′; E〈e′〉

ESS-BINDING
l 6∈ dom(π)

π′ = π[l 7→ m v] η′ = η1[x 7→ l]
∆ ` π; η; m x : τ = v in e −→ π′; η′, η; e; pop l

ESS-SEQ

π′ = drop(π, v)
∆ ` π; η; v; e −→ π′; η; e

ESS-NAME
π(η1(x)) = m v

π′, v′ = copy(π, v)
∆ ` π; η; x −→ π′; η; v′

ESS-PROP
π(li) = m v π′, v′ = copy(π, v)

struct s {m1 x1 : τ1, . . . , mk xk : τk} ∈ ∆
∆ ` π; η; [l1, . . . , lk]s.xi −→ π′, η; v′

ESS-ELEM
π(lc+1) = m v

π′, v′ = copy(π, v) 0 ≤ c < k
∆ ` π; η; [l1, . . . , lk][c] −→ π′; η; v′

ESS-STRUCTLIT
l1, . . . , lk 6∈ dom(π)

π′ = π[li 7→ mi vi | 1 ≤ i ≤ k] struct s {m1 x1 : τ1, . . . , mk xk : τk} ∈ ∆
∆ ` π; η; s(v1, . . . , vk) −→ π′; η; [li, . . . , lk]s

ESS-ARRAYLIT
l1, . . . , lk 6∈ dom(π)

π′ = π[li 7→ var vi | 1 ≤ i ≤ k]
∆ ` π; η; [v1, . . . , vk] −→ π′; η; [l1, . . . , lk]

ESS-FUNC
l 6∈ dom(π′) η′ = η1[x0 7→ l]

π′, ηλ = mkenv(π, y1 : η1(yi), . . . , yh : η1(yh)) π′′ = π′[l 7→ let λ(x : p, ηλ, e1)]

∆ ` π; η; func x0(x : p)→ τλ {[y1, . . . , yh] in e1} in e2 −→ π′′; η′, η; e2; pop l

ESS-COND-T
c 6= 0

∆ ` π; η; c ? et : ee −→ π′; η; et

ESS-CALL
Icpy = {i | 1 ≤ i ≤ k ∧ pi = τi} Iref = {i | 1 ≤ i ≤ k ∧ pi = inout τi}

{li | i ∈ Icpy} ∩ dom(π) = ∅ ∀i, j ∈ Iref , i 6= j =⇒ acc(π, vi) ∩ acc(π, vj) = ∅
π′ = π[li 7→ let vi | i ∈ Icpy] η′ = ηλ[xi 7→ li | i ∈ Icpy][xi 7→ vi | i ∈ Iref ]

∆ ` π; η; λ(x1 : p1, . . . , xk : pk, ηλ, e)(v1, . . . , vk) −→ π′; η′, η; e; pop {li | i ∈ Icpy}

ESS-COND-F

∆ ` π; η; 0 ? et : ee −→ π′; η; ee

ESS-POP
1≤i≤k︷ ︸︸ ︷

πi−1(li) = mi vi

1≤i≤k︷ ︸︸ ︷
πi = drop(πi−1, vi)

π′ = πk[li 7→ ⊥ | 1 ≤ i ≤ k]
∆ ` π0; η, η; v; pop l1, . . . , lk −→ π′; η; v

ESS-INOUT-PATH
∆ ` π; η; &r −→lv π′, η′; r′

∆ ` π; η; &r −→ π′, η′; r′
ESS-INOUT

∆ ` π; η; &lvar −→ π, η; l

ESS-ASSIGN-PATH
∆ ` π; η; r −→lv π′; η′; r′

∆ ` π; η; r = e1; e2 −→ π′; η′; r′ = e1; e2

ESS-ASSIGN
π(l) = m0 v0 π′ = drop(π, v0) π′′ = π′[l 7→ var v]

∆ ` π; η; lvar = v; e −→ π′′; η; e

ESS-UPCAST
l 6∈ dom(π) π′ = π[l 7→ let v]
∆ ` π; η; v as Any −→ π′; η; box(l)

ESS-DOWNCAST
τ 6= Any typeof (v) = τ π(l) = let v π′, v′ = copy(π, v)

∆ ` π; η; box(l) as τ −→ π′; η; v′

∆ ` π; η; r −→lv π′; η′; r′

PSS-NAME
η1(x) = l π(l) = m v
∆ ` π; η; x −→lv π; η; lm

PSS-STRUCT
∆ ` π; η; r −→lv π′; η′; r′

∆ ` π; η; r.x −→lv π′; η′; r′.x

PSS-PROP
m′ = min(m, mi) π(l) = m [l1, . . . , lk]s

struct s {m1 x1 : τ1, . . . , mk xk : τk} ∈ ∆

∆ ` π; η; lm.xi −→lv π; η; lm′
i

PSS-ARRAY
∆ ` π; η; r −→lv π′; η′; r′

∆ ` π; η; r[e] −→lv π′; η′; r′[e]

PSS-INDEX
∆ ` π; η; e −→ π′; η′; e′

∆ ` π; η; lm[e] −→lv π′; η′; lm[e′]

PSS-ELEM
0 ≤ c < k π(l) = m [l1, . . . , lk]

∆ ` π; η; lm[c] −→lv π; η; lm
c+1

Figure 7 Small-step semantics of Swiftlet
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mkenv(π, ε) = π, [⊥]

π(l) = m v π′, v′ = copy(π, v)
l′ 6∈ dom(π′) mkenv(π′[l′ 7→ m v′], x : l) = π′′, η′′

mkenv(π, x : l, x : l) = π′′, η′′[x 7→ l′]

The rule ESS-FUNC applies mkenv on the current frame and
the bindings declared in the function’s capture list. It concludes
with a value of the form λ(x : p, ηλ, e), where ηλ is the captured
environment.

Value copy A number of rules formally describe situations in
which copying takes place. All rely on a helper function copy
to clone a value v in a store π.

We mentioned in Section 4.3 that, at an abstract level, copy-
ing was equivalent to the identity. At a lower-level, however,
copying structures, closures, arrays and existential containers
involve memory allocations that require more attention.

To preserve value independence, copy must not clone loca-
tions that are part of these values’ runtime representation; it
must allocate new memory and duplicate contents. Fortunately,
as values always form topological trees, the helper can be im-
plemented as a recursive traversal of their representation. For
instance, copying structures is defined as follows:

1≤i≤k︷ ︸︸ ︷
π0(li) = mi vi

1≤i≤k︷ ︸︸ ︷
πi, v′i = copy(πi−1, π0(li))

l′1, . . . , l′k 6∈ dom(πk) π′ = πk[l′i 7→ mi v′i | 1 ≤ i ≤ k]
π′, [l′1, . . . , l′k]

s = copy(π0, [l1, . . . , lk]s)

Garbage collection Rules ESS-BINDING, ESS-FUNC, and
ESS-CALL relate to expressions that delimit a scope. The three
of them append an expression of the form pop l in their conclu-
sions, where the sequence l represents the memory locations at
which scoped values where allocated.

Pop expressions delimit the end of a scope. They are evalu-
ated by ESS-POP, which removes the last frame and destroy the
values stored at the locations l, reclaiming the memory of the
values that are no longer accessible.

Memory collection is carried out by a helper function drop
that destroys a value by freeing the locations that are part of its
representation. Just as copying, this process is implemented as
a recursive traversal of the value’s representation. For instance,
destroying structures is defined as follows:

1≤i≤k︷ ︸︸ ︷
π0(li) = mi vi

1≤i≤k︷ ︸︸ ︷
πi = drop(πi−1, vi)

π′ = πk[l′i 7→ ⊥ | 1 ≤ i ≤ k]
π′ = drop(π0, [l1, . . . , lk]s)

Assigning a value to a binding ends the lifetime of its current
value. Hence, drop also appears in the premise of ESS-ASSIGN

to collect the memory of the binding’s current value. Finally,
ESS-SEQ ends the lifetime of the value resulting from the evalu-
ation of the first expression, as it is known to be irrelevant for
the remainder of the execution.

Function calls The rules ESS-CALL describes function calls.
It prepares a new frame initialized with the closure’s environ-
ment and extended with new bindings for each argument. This
frame is then pushed on the stack, and used to evaluate the
function’s body. Hence, the callee cannot access the caller’s
binding, unless they are passed explicitly as inout arguments.

Frame preparation requires ESS-CALL to distinguish between
direct arguments and inout arguments. It does so by collecting
argument indices in two different sets, namely Icpy, for direct
arguments, and Iref , for inout arguments. The value of each
direct argument is inserted into the new frame, while the lo-
cation of each inout argument is inserted into the new frame,
without involving any copy. These locations are obtained by
applying ESS-INOUT on paths prefixed with an ampersand (&).
The rule prescribes that the path be mutable, guaranteeing that
immutable bindings cannot serve as inout arguments. In ad-
dition, the rule requires that inout arguments denote disjoint
parts of the pointer store.

The helper function acc builds the set of memory locations
reachable from a given root location. Since composition denotes
whole/part relationships, this set corresponds to the locations
that constitute a value’s in-memory representation, together with
the locations that constitute parts of this value. For instance, the
locations reachable from a location at which a structure instance
is stored are obtained as follows:

π(l0) = m [l1, . . . , lk]s

acc(π, l0) =
⋃

1≤i≤k

acc(π, li) ∪ {l0, l1, . . . , lk}

4.6. Soundness
We now discuss how Swiftlet’s operational semantics relates to
its typing semantics. Specifically, our typing rules guarantee that
well-typed programs can either be reduced to a value, or never
terminate, or fail because of a runtime error, such as an invalid
cast or a out-of-bound array access. Hence, crucially, they
cannot violate immutability restrictions and local reasoning.

We first establish these guarantees on the small-step seman-
tics from Section 4.5.

Definition 4.1 (Well-formed memory state). A memory state
π; η is well-formed if |η| ≥ 1 and for any pair of bindings
x, x′ ∈ dom(η1) such that x 6= x′, and l = η1(x), and l′ =
η1(x′), we have acc(π, l) ∩ acc(π, l′) = ∅.

Definition 4.2 (Well-typed memory state). A well-formed mem-
ory state π; η is well-typed in a typing context Γ, written
∆ ` π; η : Γ, if and only if for all frames ηi in η we have
∀m x : τ ∈ Γ, π(ηi(x)) = m v ∧ ∆; Γ; π ` v : τ.

In plain English, Definition 4.1 states that a memory state is
well-formed if all its local bindings denote disjoint regions of the
memory. Definition 4.2 states that a memory state is well-typed
in the context of Γ if it matches the latter’s typing assumptions.
Remark the overloaded typing judgment ∆; Γ; π ` e : τ, which
also involves the pointer store in order to type values whose
representation involve memory allocations.
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We state the soundness theorem in the classical syntactic
style of Wright & Felleisen (1994). Full proofs appear in Ap-
pendix A.

Lemma 4.1 (Progress). Given π; η such that ∆; Γ; π ` e : τ
and ∆ ` π; η : Γ, either e is a value, or there exist π′, η′, e′

such that ∆ ` π; η; e −→ π′; η′; e′, or the program is stuck due
to a runtime error.

Lemma 4.2 (Preservation). Given π; η such that ∆; Γ; π ` e :
τ, and ∆ ` π; η : Γ, and ∆; π; η; e −→ π′; η′; e′, there exists
Γ′ such that ∆; Γ′; π′ ` e′ : τ and ∆ ` π′; η′ : Γ′.

Given a well-typed memory state, Lemma 4.1 states that the
evaluation of an expression e either steps due to an invalid array
subscript (e.g., a[2] where a is an empty array), or a invalid
cast operation. Lemma 4.2 states that the evaluation of a step
preserves well-formedness and well-typedness. Type soundness
follows trivially.

Theorem 4.1 (Type soundness). If ∆;∅; [⊥] ` e : τ and
∆ ` [⊥]; [⊥]; e −→∗ π′; η′; e′, then either e′ is a value or
the program is stuck due to a runtime error.

JcKπ
∆ = c

Jbox(l)Kπ
∆ = box(JvKπ

∆)

where π(l) = m v

Jbox(l)Kπ
∆ = box(JvKπ

∆) if π(l) = m v

J[l1, . . . , lk]Kπ
∆ = [Jl1Kπ

∆ , . . . , JlkKπ
∆ ]

J[l1, . . . , lk]sKπ
∆ = [xi 7→ mi JliKπ

∆ | 1 ≤ i ≤ k]s

where struct s {m1 x1 : τ1, . . . , mk xk : τk} ∈ ∆

Jλ(x : p, ηλ, e)Kπ
∆ = λ(xp, e[/σ])

where σ = [xi 7→ JviKπ
∆ | xi ∈ dom(ηλ)

∧ηλ(xi) = li ∧ π(li) = mi vi]

Figure 8 Correspondence between value representations

To convince ourselves that the natural semantics from Sec-
tion 4.3 is an appropriate abstraction of the small-step semantics,
can establish an equivalence relation between the two.

Theorem 4.2 (Semantics equivalence). Given an expression
e expressible in the natural semantics and a set of structure
declarations ∆, if ∆ ` [⊥]; [⊥];−→n π; η; v, then there exists
µ′, v′ such that ∆, [⊥] ` e ⇓ µ′, v′, then such that JvKπ

∆ = v′.

Proof sketch. The proof is by induction on the length n of the
evaluation sequence ∆ ` [⊥]; [⊥];−→n π; η; v. If n = 0, then
e is a value and the property holds trivially. Otherwise, assume
the property holds for n′ ≤ n and prove it for a sequence of
length n′ + 1.

parse sema codegen

swiftlet
source

LLVM
bitcode

compiler

syntax
errors

type
errors

Figure 9 Swiftlet’s compiler architecture

Equivalence between memory representations is determined
by the means of an operator det ·π∆ , defined in Figure 8. The
operator translates a value from the small-step semantics into
their representation in the natural semantics, given a set of
structure declarations ∆ and a pointer map π.

5. Generating native code with LLVM
This section describes the implementation of a compiler for
Swiftlet. That compiler is written in Swift, in the style of MVS,
and distributed as an open-source project hosted on GitHub:
https://github.com/kyouko-taiga/mvs-calculus.

Figure 9 gives an overview of the compiler’s architecture.
The “parse” module implements a recursive-descent parser us-
ing combinators (Hutton & Meijer 1998) that transforms textual
sources to an abstract syntax tree (AST). That AST is passed to
the “sema” module (for semantic analysis), which is essentially
a type checker. It verifies that expressions are well-typed (e.g.,
variables of type Int are only assigned to integer values), that
mutability constraints are satisfied (e.g., constants are never mu-
tated), and guarantees path uniqueness for all inout arguments.
Finally, the “codegen” module translates the AST to LLVM’s
intermediate representation, optionally applying a handful of op-
timizations. Note that code generation always succeed, as ASTs
that passed semantic analysis are guaranteed to be well-formed.

LLVM (Lattner & Adve 2004) is a popular middleware in
numerous compilers, including Clang (C/C++ and Objective-
C), rustc (Rust) and even swiftc (Swift). The framework is
centered around an SSA-style (Cytron et al. 1991) intermedi-
ate representation, called LLVM IR, that serves as a front-end
agnostic language to apply code optimizations, and generate
machine code. Hence, LLVM IR dramatically reduces the engi-
neering effort required to build a compiler. However, translating
language features into this common representation—a process
often referred to as lowering—comes with its own challenges.

5.1. Memory representation
There are four built-in data types in Swiftlet: Int for signed inte-
ger values, Double for double-precision floating-point numbers,
a generic type [T] for arrays of type T, and Any for containers of
arbitrary values. In addition, the language supports two kinds
of user-defined types: functions and structures.

5.1.1. Scalars and structures Int and Double have a 1-to-
1 correspondence with machine types and are represented as i64
and double in LLVM, respectively. Since struct declarations
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cannot be mutually recursive, all values of a structure have a
finite memory representation (more on that later) and can be
represented as a passive data structure (PDS), where each field
is laid out contiguously with possible padding for alignment.

5.1.2. Arrays Arrays require dynamic allocation, as the com-
piler is in general incapable of determining their size statically.
An array is represented by a pointer φ to a contiguous block
of heap-allocated memory. That block is structured as a tuple
〈r, n, k, e〉 where r is a reference counter, n denotes the number
of elements in the array, k denotes the capacity of the array’s
payload (i.e., the size of its actual contents in bytes) and e is a
payload of k bytes, containing n elements. The counter r serves
to implement copy-on-write (see Section 6.3).

Figure 10 depicts the in-memory representation of an array
assigned to a local variable. The square on the left of the dashed
line represents the single memory cell allocated on the stack,
containing the pointer φ. The squares on the right represent
cells allocated in the heap. Each cell ei is a single independent
element that may itself contain pointers to other heap-allocated
memory blocks (e.g., for an array of arrays).

φ r n k e1 e2 · · · en

k = n× stride(T)

stack heap

Figure 10 In-memory representation of an array of T

The capacity k of an array typically differs from the number
of its elements n. The former depends on the size of an element
in memory, or more precisely, its stride. The stride of a type
denotes the number of bytes between two consecutive instances
stored in contiguous memory, which depends on the size and
memory alignment of a type. Both information depend on the
target ABI and are left for LLVM to figure out.

Example 5.1. An array of two 16-bit integers [42, 1337] on a
64-bit little-endian machine is represented by the byte sequence
〈1, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 42, 0, 5, 57〉. It contains two ele-
ments, thus n = 2, yet its capacity k = 4 since each element
has a stride of two bytes.

5.1.3. Closures Just like arrays, closures require dynamic
allocation because the size of their environment cannot be de-
termined statically. A closure is represented as a triple 〈φ, ε, ν〉
where φ is a pointer to a function implementing the closure, ε
is a pointer to the closure’s environment (potentially null if the
closure has no captures), and ν is a pointer to the value witness
of the closure (see Section 5.2).

Figure 11 depicts the in-memory representation of a closure
graphically. The cells e represent the contents of the closure’s
environment, laid out contiguously. Just like in the case of
arrays, each cell is an independent value.

The function pointed by φ is obtained by defunctionaliza-
tion (Reynolds 1998a). This process transforms a closure into a

φ

ε

ν

e1 e2 · · · en

pr
og

ra
m

co
de

stack heap

Figure 11 In-memory representation of a closure

global function in which all captured identifiers are lifted into
an additional parameter for the closure’s environment.

5.1.4. Existential containers Containers of type Any are
implemented via value boxing (Henglein & Jørgensen 1994).
Boxing consists of a storing a value inside of a heap-allocated
area, so that it can be represented by a fixed-sized pointer to
that area. Unfortunately, this approach suffers a performance
penalty incurred by heap allocation and collection, which may
prove particularly expensive in a programming language with
pervasive copying.

We leverage a technique called small-object optimization
to mitigate that cost. Instead of systematically representing a
container as a pointer to a heap-allocated area, we use a small
buffer that is large enough to fit small objects inline. Values are
boxed in the heap only when they are too large to fit inside of
the buffer. In this case, the latter is used to store a pointer to out-
of-line storage. Otherwise, we can avoid the cost of allocating
and freeing memory in the heap and eliminate the indirection
overhead typically caused by value boxing.

A container is represented as a tuple 〈s, ν〉 where s is a
small inline buffer and ν is a pointer to the value witness of the
wrapped value (see Section 5.2). Choosing the size of s is a
trade-off between minimizing heap allocation and minimizing
the space that is wasted when the wrapped value is smaller than
the buffer, or when it must be allocated out-of-line nonetheless.
In our implementation, that space is large enough to fit three
64-bit integer values, which is sufficient to store numeric values,
arrays, and closures.

2

5

·

ν

Vec2 stored inline

unused space

pr
og

ra
m

co
de

stack

Figure 12 In-memory representation of an existential con-
tainer using inline storage to hold a vector Vec2(x: 2, y: 5)

Figure 12 shows an example of the in-memory representa-
tion of a container that stores a 2-dimensional vector (i.e., the
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result of an expression Vec2(x: 2, y: 5) as Any). Here, the vec-
tor’s value is small enough to be stored directly inside of the
container’s buffer, leaving some unused space.

5.2. Value witnesses
A value’s lifetime corresponds to the span of time from its initial-
ization to its destruction. In the absence of first-class references,
that information can be determined statically. Initialization oc-
curs when a value is assigned to a variable while two events can
trigger destruction: reassignment and exit from the variable’s
scope. Following this observation, memory management can be
automated during code generation.

Swift allows the declaration of a variable to be separated
from its initialization. It then relies on definite assignment
analysis (Fruja 2004) for guaranteeing initialization before use,
possibly inserting dynamic checks in situations where that prop-
erty cannot be determined statically (e.g., when variables are
initialized conditionally). In contrast, Swiftlet requires that
all local bindings be initialized at the point of their declara-
tion. This restriction conveniently implies that the compiler can
always distinguish between initialization and assignment.

We say that a type is trivial if it denotes a numeric value or a
composition of trivial types in a structure (e.g., a pair of Ints).
Conversely, types requiring dynamic allocations are non-trivial.
That includes array types, function types, existential containers,
and structures containing at least one non-trivial property. In
other words, the notional value of a trivial type is represented
exactly by the contents of its inline storage, whereas the notional
value of a non-trivial type may include out-of-line storage.

Since trivial types do not involve any out-of-line storage,
copying or deinitializing a value does not necessitate any par-
ticular operation. Hence, assigning a variable of a trivial type
boils down to a byte-wise copy of the right operand.

The situation is a bit more delicate for non-trivial types.
For arrays, a first issue is that the size of the heap-allocated
storage cannot be determined statically. Instead, it depends on
the value of k in the tuple representing the array. A second
issue is that copying may involve additional operations if the
elements contained in the array are dynamically sized as well. In
this case, a byte-wise copy of the array’s payload would create
unintended aliases, breaking value independence. Instead, each
non-trivial element should be copied individually. One solution
is to synthesize a function for each data type that is applied
whenever a copy should occur.

5.2.1. Synthesizing copy and destruction If the type is
trivial (i.e., it does not involve any dynamic allocation), its
copy function is equivalent to a byte-wise copy. Otherwise, it
implements the appropriate logic, calling the copy function of
each contained element. Similarly, the logic implementing the
destruction of a value can be synthesized into a destructor. If
the type is trivial, then this destructor is a no-op. Otherwise, it
recursively calls the destructor of each contained element and
frees the memory allocated for all values being destroyed.

We synthesize a copy function and a destructor for every type
used in a program. Together, these functions form the value
witness of a type. Just as the witness type specifies the hidden
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0x310 vc.y: 5
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Figure 13 In-memory representation of inout arguments

representation of an existential package in type theory (Pierce
2002, Chapter 24), a value witness species the hidden imple-
mentation of a type’s value semantics, providing the compiler
with a uniform programming interface to interact with values. A
call to the copy function is issued every time a value is assigned
or crosses function boundaries, while a call to the destructor is
issued before lifetime ending events, effectively implementing
compile-time garbage collection.

All values of a particular type share the same value witness,
except closures. Indeed, the environment captured by a clo-
sure of type (T) −> U might differ from that of another closure
with the same type. Hence, a different witness must be synthe-
sized for each function declaration. Incidentally, that explains
why closure tuples contain pointers to their copy function and
destructor.

5.2.2. Synthesizing equality As observed in Section 2.4,
the ability of MVS to express whole/part relationships allows us
synthesize operations based on notional values, such as hashing
and equality.

Swiftlet synthesizes an equality function for all types used
in the program.16 For integer and floating-point values, equality
corresponds directly to LLVM’s icmp and fcmp instructions, re-
spectively. For other types, the compiler builds a function that
recursively checks for equality on each part of the value.

5.3. Inout arguments
At function boundaries, structures are exploded into scalar argu-
ments and passed through registers, provided the machine has
enough of them. If the structure is too large, it is passed as a
pointer to a stack cell in the caller’s context, in which a copy of
the argument is stored before the call.

inout arguments are passed as (possibly interior) pointers. If
the argument refers to a local variable or one of its fields, then
it is passed as a pointer to the stack. If it refers to the element
of an array, then it is passed as a pointer to the array’s storage,
offset by the element’s index.

Example 5.2. Consider the following program:

1 struct Vec2 { var x: Int; var y: Int; };

16 In Swift, synthesizing equality (and hashing) is provided as an opt-in mecha-
nism by conforming to the protocol Equatable (and Hashable).
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2 func swap(a: inout Int , b: inout Int)
3 −> Void { ... };
4 var ar = [42, 13];
5 var vc = Vec2(x: 2, y: 5);
6 swap(a: &ar[1], b: &vc.y)

Figure 13 shows the contents of the program’s memory dur-
ing the call to swap. As discussed in Section 5.1, the array is
allocated out-of-line whereas the 2-dimensional vector is laid
out on the stack contiguously. Both inout arguments are passed
as pointers. The first refers to the second element of the array,
stored in the heap. The second refers to the second property of
the vector, stored in the stack.

The compiler can guarantee that the pointee can never be
outlived, because the language disallows the pointer to escape in
any way. In fact, the value of the pointer itself is not accessible.
The code generator sees that the callee can only dereference
it, either to store or load a value. In our formal semantics,
that behavior is modeled by the fact that the path of a value
passed as inout argument is substituted for the corresponding
parameter in the callee (Figure 4, rule E-CALL). Further, recall
that the type system guarantees exclusive mutable access to any
memory location. Hence, pointers representing inout arguments
are known to be unique.

6. Optimizations

The language implementation we have described in Section 5
generates a fair amount of memory traffic, because copies are
created every time a value is assigned to a variable or passed
as an argument. Much of this traffic is unnecessary, though,
because most original values are likely to be destroyed immedi-
ately after being copied, or because copied values might never
be mutated and could have been shared.

This section discusses a handful of techniques included in
Swiftlet’s compiler to eliminate these unnecessary copies.

6.1. Move semantics

A recurring pattern is to assign values just after they have been
created. For example, consider the expression let x = [1, 2];
f(x). The value of the array is assigned directly after its creation,
triggering a copy, and it is destroyed immediately afterwards.
In other words, a naive implementation will evaluate the right
operand, resulting in the creation of a new array value, copy this
value to assign x and then destroy the original.

To study this inefficiency more formally, we can observe
E-BINDING. The unnecessary copy is modeled by copy(v1) in
the premise of the rule. In the concrete operational semantics,
copy corresponds to the copy function of a value witness, which
may involve expensive memory allocation.

Clearly, the copy is useless in the above-mentioned example,
since the value of the right operand will never be used after the
binding’s initialization. Therefore, that value could be moved
rather than copied. Formally, such an optimization could be
expressed by the following variant of E-BINDING:

E-BINDING-MOVE

∆, µ ` e1 ⇓R µ′, v1
is_temporary(e1) ∆, µ′[x 7→ move(v1)] ` e2 ⇓R µ′′, v2

∆, µ ` m x : τ = e1; e2 ⇓R µ′′[x 7→? µ′(x)], v

The predicate is_temporary(e1) holds when e1 denotes a
temporary value, such as an array literal, or the result of a func-
tion call. In that case, the value v1 can be moved. At an abstract
level, the function move is equivalent to the identity, just like
copy. In the concrete operational semantics, however, move is a
lifetime ending operation that transfers the byte representation
of a value, meaning that destructors are not called on moved
values. At the machine level, that transfer boils down to a byte-
wise copy. Incidentally, copy and move are equivalent for trivial
types but describe different behaviors for non-trivial types.

Earlier, we said that byte-wise copies of non-trivial types
may create unintended aliases, threatening value independence.
Nonetheless, since move is a lifetime ending operation, such
aliases are in fact immediately destroyed.

Note that the same optimization could be applied on the
last use of a value. In the expression let x = [1, 2]; [x], the
constant x is used only once, to initialize an array of arrays of
Ints. As formally described by E-ARRAYLIT, x must be copied
to create a new array instance. Nonetheless, since that use is the
last occurrence of x in the entire expression, the value could be
moved rather than copied.

6.2. Substituting aliases for copies
Function parameters are considered immutable unless they are
annotated with inout. Moreover, recall that arguments in Swift-
let are passed by value. Therefore, in terms of a concrete opera-
tional semantics, arguments can be passed as aliases to values
stored at the call site rather than being copied.

The soundness of this optimization relies on an important
additional assumption. The lifetime of the alias must not exceed
that of the aliased value. Fortunately, such an assumption can
be verified by preventing aliased values from being destroyed,
and aliases from escaping the callee. Remark that this idea is
akin to Rust-like immutable borrows (Naden et al. 2012).

We can express the substitution of aliases for copies formally
in a variant of E-CALL, which no longer copies argument values
to build the substitution σ:

E-CALL-ALIAS
1≤i≤k︷ ︸︸ ︷

∆, µi−1 ` ai ⇓R µi, vi
∆, µ ` e0 ⇓R µ0, λ(x1 : p1, . . . , xk : pk, eb)

σ = [xi 7→ vi | 1 ≤ i ≤ k] ∆, µi ` eb[/σ] ⇓R µ′, v

∆, µ ` e0(a1, . . . , ak) ⇓R µ′, copy(v)

The aforementioned assumption implies a kind of contract
between the caller and the callee: both guarantee that the life-
time of a borrowed argument does not end before the end of the
call. Hence, the callee is no longer responsible for ending the
lifetime of borrowed parameters. In fact, that operation must
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even be prohibited. At a concrete operation level, it means that
destructors are not called on borrowed parameters.

A second part of the contract stipulates that borrowed pa-
rameters may not escape. That clause is guaranteed by the
application of copy in the conclusion of the rule, which pro-
duces a new value whose lifetime is independent from that of
any borrowed parameter.

Following the same rationale, initialization of immutable
bindings from immutable values can be substituted by aliases
as well. Consider the following expression: let x = [[1, 2],
[3, 4]]; let y = x[0]; f(y). The constant y is initialized from
another constant value. Moreover, the lifetime of y is lexically
shorter than x’s. Therefore, y can simply alias x’s first element
rather than copying it. Formally, this optimization can be de-
scribed by another variant of E-BINDING:

E-BINDING-ALIAS

∆, µ ` r ⇓L µ′, let w
σ = [x 7→ w] ∆, µ′ ` e[/σ] ⇓R µ′′, v

∆, µ ` let x : τ = r; e ⇓R µ′′[x 7→? µ′(x)], v

The rule only applies to binding declarations of the form
let x : τ = r; e, where the binding is declared constant and
initialized by a path expression. Notice that the path expression
is evaluated with ⇓L rather than ⇓R, producing an lvalue rather
than a value. The rule additionally checks that this lvalue is
immutable before substituting it for the declared binding in the
expression e.

6.3. Copy-on-write
The optimization strategies we discussed in Section 6.2 are
not applicable in the presence of mutation. Any assignment
involving a mutable binding, on the left- or right-hand side
typically requires a copy, because the value might be mutated
later. Similarly, assigning a mutable value to a mutable binding
also requires a copy.

Nonetheless, it is possible that neither the original nor the
copy end up being actually mutated, perhaps because the muta-
tion depends on a condition that is evaluated at runtime. In this
case, unfortunately, the compiler must conservatively assume
that a mutation will occur and perform a copy to preserve value
independence.

One simple mechanism can be used to work around this
apparent shortcoming: copy-on-write. Copy-on-write lever-
ages runtime knowledge to delay copies until they are actually
needed. Heap-allocated storage is associated with a counter that
keeps track of the number of references to that storage. Every
time a value is copied, an alias is created and the counter is
incremented. The value of this counter is checked before mu-
tation actually occurs, at runtime, to determine uniqueness. If
the storage is shared, the counter is decremented, the storage is
duplicated and the mutation is performed on a copy. Otherwise,
the mutation is performed on the original.

Example 6.1. Consider the following program:

1 func sort(array: inout [Int]) −> Void { ... };
2 var a0 = [1, 2];

3 a0[1] = 3;
4 var a1 = a0;
5 sort(array: &a1)
6 // a0 and a1 are the same array

We assume the existence of a function that sorts an array
in-place. Then, we declare an array a0, which is mutated at line
3. At that point, the value of a0’s internal reference counter is 1,
so the mutation is performed on its storage directly.

Line 4 declares another array a1, initialized to a0. With
copy-on-write, the value of a0 is not copied right away. Instead,
the reference counter of its internal storage is incremented,
meaning that a1 is actually an alias by the time it is passed as
an argument to sort, at line 5. Should elements not be in order,
the first mutation that sort will attempt will trigger a copy. In
the present case, however, no copy will occur and a0 and a1 will
continue to share state after line 5.

Of course, copy-on-write prevents purely static garbage col-
lection. Indeed, because of potential sharing, the lifetime of
heap-allocated storage can no longer be determined at compile-
time. Nonetheless, garbage collection can still be automated
with predictible performance. The reference counter is de-
creased whenever the destructor of a value referring to the
associated storage is called. If it reaches zero, then the con-
tents of the storage are destroyed and deallocated.

Swiftlet applies copy-on-write on arrays only, as structures
are allocated inline, enabling a different set of optimizations to
elimitate unnecessary copies. One limitation of our approach,
though, stems from its interaction with the implementation of
inout arguments (Section 5). Recall that an inout argument is
passed as a (possibly interior) pointer. Hence, the callee has no
way to determine whether or not that pointer refers to a value
inside of a shared buffer. As a result, the caller is compelled to
copy non-unique storage defensively.

Example 6.2. Consider the following program:

1 func sort(array: inout [Int]) > Void { ... };
2 var a0 = [[1, 2], [3, 4]];
3 let a1 = a1;
4 sort(array: &a0[1])

The variable a0 is declared as an array of arrays of Ints. With
copy-on-write, it shares state with the variable a1 by the time
sort is called at line 4. The caller is compelled to copy the outer
array a0 because there is no way for the callee to determine that
inner array a0[1] is stored inside of shared storage.

Nonetheless, note that a0’s copy will not trigger the copy
of its inner arrays, applying copy-on-write instead. Hence, a
copy of the inner array a0[0] will occur if and only if sort must
perform a mutation. Meanwhile, a0[1] will share state with
a1[1] after the call at line 4.

6.4. Leveraging local reasoning
We cited O’Hearn et al. (2001) in the introduction to emphasize
the importance of local reasoning for human developers and
compilers alike. In particular, one can easily identify and discard
mutations, whose results cannot be observed elsewhere.

1 struct Vec2 { ... };
2 // ...
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3 func f(v0: Vec2) −> Vec2 {
4 var v1 = v0;
5 let v2 = v1;
6 v1.x = 8;
7 Vec2(x: v2.x, y: v1.y)
8 }

Consider the above program. Thanks to local reasoning, an
optimizer can safely discard the assignment to v1.x at line 6,
because its effect can never be observed. As all values are inde-
pendent, neither the parameter v0 nor the local variable v1 can
share mutable state with any other variable in the program, no
matter what we write in place of the ellipsis at line 2. Further-
more, without the assignment at line 6, it becomes evident that
v0, v1, and v2 denote the exact same value. Therefore, constant
propagation will eventually deduce that the function simply
returns the value of its argument.

Freedom from aliasing also simplifies scalar replacement of
aggregates (SROA) (Jambor 2010). This optimization consists
of substituting the parts of an aggregate with local scalar vari-
ables. The goals of this substitution are twofold: avoid heap
allocation by inlining aggregates on the stack, and unlock addi-
tional optimization opportunities based on scalar values, such
as dead store elimination and constant propagation.

Our implementation substitutes array literals on the stack
when it detects that their value can never escape. That detection
is performed as a simple AST traversal that looks for uses of the
array as a function argument or a return value. Then, it relies
on LLVM’s SROA pass to transform stack-allocated arrays to
scalar SSA values.

7. Performance Evaluation
This section evaluates the performance of MVS, implemented
with the strategies and optimizations we discussed in Sections 5
and 6, with the aim to answer the two following questions:

– Does MVS suffer prohibitive performance overhead due
to the use of copy-on-write?

– Does MVS offer performance gains in comparison to func-
tional updates?

7.1. Environment
The benchmarks were run on a workstation equipped with an
Intel Xeon Gold 6154 CPU clocked at 3.00GHz and 192GB of
RAM. The machine runs a Debian-based distribution that uses
Linux 5.10.40 kernel.

We compiled benchmarks with Swift 5.5.2, Scala 2.12 com-
piled with Scala Native 0.4.2 (Shabalin 2020), Clang 11 for
C++, and our own compiler for Swiftlet.17 The choice of these
compilers is deliberate. All implementations target LLVM IR,
allowing us to explore trade-offs of the programming model on
each language, rather than the differences of lower-level code
generation.

Benchmarks were compiled with the most aggressive opti-
mization level: −O3 for C++, −Ounchecked for Swift, and release
−full for Scala Native.

17 https://github.com/kyouko-taiga/mvs-calculus

1 struct s0 {
2 var p0: [[ Double ]]
3 var p1: [[ Double ]]
4 }
5 @inline(never)
6 func f0(_ v0: s0, _ v1: Double) −> Double {
7 var v4: s0 = v0
8 let v8: [[ Double ]] = v4.p1
9 let v14: [Double] = v8[0]

10 let v13: Double = v14 [0]
11 v4.p0 = v8
12 var v18: Double = v13
13 v4.p0 = v8
14 let v27: Double = v14 [0]
15 let v73: Double = v18 − v27
16 v4.p0 = v8
17 let v175: Double = v73 + v27
18 return v175
19 }

Listing 3 A randomly generated benchmark (Swift).

7.2. Benchmarks

We evaluate the aforementioned languages and compilers on
two groups of benchmarks:

Synthetic benchmarks. Our primary set of benchmarks is
composed of randomly generated programs with varying lines
of codes and number of mutating instructions. These programs
are produced by a fuzzer that builds correct-by-construction
programs as language-agnostic ASTs that are eventually trans-
formed to source code by language-specific translators.

The fuzzer is able to build programs that use all the con-
structs present in Swiftlet except higher-order functions and
existential containers, while the translators produce idiomatic
code in each target language. For the purpose of our evaluation,
we implemented translators for Swift; Scala, a functional lan-
guage; and C++, an imperative language. Arrays are mapped to
scala.collection.immutable.Vector in Scala and std::vector in
C++. Structures are mapped to structs in C++ and to immutable
case classes in Scala.

Generated programs are free from unintended sharing of
mutable state. That guarantee is trivial to establish in Swift,
Swiftlet, and Scala, thanks to MVS and pure functional program-
ming. In C++, mutable references across function boundaries
are prohibited. For instance, a function void f(std::vector<T>&
ar, T& el) is considered illegal, as el may alias an element in

ar.
Each benchmark is built as a variation of the same program

archetype. First, it generates a large data structure composed of
structs and arrays at different depths, whose leaves are floating-
point numbers. Then, it traverses this data structure, mutating
the nodes and performing arithmetic operations on the leaves.
The traversal is directed by calls to non-recursive functions that
operate on a specific part of the whole data structure. Some of
these functions are exempt from inlining to ensure some call
overhead is factored into our results. Listing 3 shows a program
generated in Swift.

The overall complexity of a randomly generated program is
approximated by counting the number of dynamically executed
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instructions. We use that heuristic to exclude benchmarks ex-
ceeding a threshold and keep program inputs that can terminate
in a reasonable time. Finally, the number of mutating instruc-
tions can be adjusted by modifying the weights used by the
fuzzer to select the constructs that it generates.

Well-known micro-benchmarks. Additionally, we also
port 5 well-known benchmarks by Marr et al. (2016): Bounce,
Mandelbrot, NBody, Permute and Queens. This choice is dic-
tated by the limited set of features in Swiftlet. The benchmarks
we picked are implemented using imperative language con-
structs such as arrays in Swift/Swiftlet/Scala and std::vector in
C++.

7.3. Results of synthetic benchmarks
We report results for a data set measuring the execution time
of 1344 randomly generated programs across 20 different in-
dependent runs. We normalize execution times by the fastest
implementation per benchmark and report aggregated scores
(Figure 14). We also report 50 percentile normalized time across
all benchmarks classified by the number of mutations as fraction
of all total memory accesses (Figure 15).

100 101 102

Swift

Swiftlet

Scala

C++

Figure 14 Running times (x-axis) normalized by the fastest
implementation across all synthetic benchmarks.

Results show that C++ performs relatively poorly in read-
heavy benchmarks, due to the cost of copying large data struc-
tures. Indeed, each read of std::vector copies an entire element,
potentially causing repeated copies in deeply nested data struc-
tures. On the other hand, C++ is usually the fastest implementa-
tion in programs that are dominated by writes.

In contrast, Swift is the fastest language in the overwhelm-
ing majority of the benchmarks. Just as C++, Swiftlet allows
in-place updates while the use of copy-on-write mitigates the
cost of copying large data structures. Although our own imple-
mentation does not match Swift’s performance (we explain the
gap below), remark that Swiftlet also outperforms C++.

Scala relies on persistent data structures (Odersky & Moors
2009; Stucki et al. 2015) to model updates to immutable refer-
ence types. Overall, it performs remarkably well compared to
C++, only outperformed on programs consisting of a significant
number of mutating operations (> 70%). Those benchmarks
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Figure 15 Normalized running times (y-axis) relative to ratio
of writes as fraction of all memory accesses (x-axis) across all
synthetic benchmarks.
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Figure 16 Normalized running times (y-axis) on micro-
benchmarks.

underline the advantage of in-place updates in Swift, Swiftlet,
and C++. Further, read-heavy benchmarks reveal additional
overhead for traversing non-contiguously allocated storage.

In summary, those results provide satisfying answers to our
earlier questions. Swift proved slower than C++ only for pro-
grams with extremely large number of mutating operations (>
90%), providing compelling empirical evidence in favor of
copy-on-write, in combination with other optimizations facil-
itated by the use of Swiftlet. Meanwhile, Swift outperformed
Scala in overwhelming majority of benchmarks, confirming
the relevance of Swiftlet to sidestep the performance overhead
introduced by functional updates.

7.4. Results of micro-benchmarks
Micro-benchmarks provide another perspective on the perfor-
mance differences between the languages. We record 1000
in-process iterations across 10 independent runs. Each run dis-
cards first 900 measurements as warm-up. Finally, we report 50
percentile time across last 100 iterations across all runs (Figure
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16).
Overall, both Swift and C++ perform the best, presenting ex-

tremely similar performance profiles. Since the benchmarks do
not pass large data structures by value, they avoid the pathologi-
cal slow-down that we have observed on synthetic benchmarks
in C++.

Even though we wrote benchmarks in an imperative style,
Scala does not consistently match the performance of Swift and
C++. In particular, Scala lacks support for composite value
types and, leading to a sub-optimal memory layout that requires
additional pointer indirections (Bounce, NBody). Queens high-
lights a pathalogical case of early returns being compiled in-
efficiently (which are not idiomatic in an expression-oriented
language).

Swiftlet lags behind Swift on benchmarks that depend on
heavy mutation of arrays (Bounce, NBody, Permute). Although
we implemented an extremely similar approach to compilation,
Swiftlet’s compiler lacks optimization passes that can reason
about uniqueness of reference counts, compelling execution to
run more runtime checks on reference counters.

7.5. Closing the gap between Swift and Swiftlet
Although Swiftlet shows competitive results, it is significantly
slower than Swift in most benchmarks. This shortcoming can
be explained in large part by a key missing optimization.

In spite of its advantages, copy-on-write comes at the cost
of runtime checks preceding every mutation, thus impacting
performance negatively. Fortunately, some of these checks can
be removed with static reasoning. For instance, the compiler
can prove the uniqueness of a particular value once and for all in
a sequence of assignments without control flow, eliminating the
need to check for uniqueness after the first mutating operation.

More generally, optimizers can reason statically about the
value of a reference counter by tracking pairs of increment and
decrement in a control flow graph. Additionally, compilers may
generate faster code paths for uniquely referred data structures
along with a default slow path, enabling further downstream
optimization in the former case (Ullrich & de Moura 2019).

In Swift, these techniques are implemented in a dedicated
optimizer. Manual modification of the LLVM bitcode gener-
ated by our compiler reveals that unnecessary reference counter
checks account for most of the performance loss that we ob-
served. The remainder of the gap is due to more aggressive use
of SROA, thanks to a cleverer escape analysis, as well as the
static allocation of constant arrays.

8. Related work
There exists a vast body of work dedicated to the enforcement
of local reasoning and its impact on software performance. This
section reviews some of the most related work in these areas.

Type-based approaches aimed at taming reference aliasing
have received a lot of attention in recent years. A significant
part of the research effort, however, is set in the context of
languages based primarily on reference semantics. Ownership
types (Clarke et al. 2013), for instance, bake aliasing restric-
tions into references by attaching them to ownership contexts,

typically represented by other references. Other influential pro-
posals, such as Gordon et al. (2012)’s type system for unique-
ness and immutability or Naden et al. (2012)’s type system for
borrowing, are also built on top of reference semantics. Further,
although the concept of independent values appear in early work
on aliasing protection mechanisms (Noble et al. 1998), value
semantics is typically confined to fully immutable types.

Nonetheless, we observe that MVS share one key insight
with these approaches: it dissociates the knowledge of a lo-
cation from the permission to access it. In capability-based
systems (Smith et al. 2000), that permission and its extent (read
or write) is granted by a “token” usually treated as a linear
resource at the type-system level and erased at runtime. In
Swiftlet, that permission is tied to a path and its mutability.

The benefits of MVS with respect to correctness, safety, and
performance can be traced back to Baker (1992)’s Linear Lisp.
Building on Wadler (1990)’s linear types, Linear Lisp offered
static garbage collection, promised freedom from data race and
addressed concerns of efficiency by the means of a constant
pool (Baker 1994). Despite their advantages, however, linear
types impose a relatively constraining programming style in
which every value must be used exactly once, requiring par-
ticular care to deal with conditional code. In response, Tov &
Pucella (2011) proposes to relax the linearity constraint with
affine resources, which can be used at most once.

Rust (Matsakis & Klock 2014) is certainly a heir of owner-
ship types, affine types and capability-based systems, unifying
these ideas into a coherent, high performance programming
language. Ultimately, Rust’s insistence on the uniqueness of
mutating references pursues the same goal as MVS: local rea-
soning. Hence, it is no wonder that attempts to formalize its
semantics (Weiss et al. 2019; Jung et al. 2018) typically draw in-
spiration from separation logic (Reynolds 2002). The similarity
does not end here. As we already mentioned, Rust’s borrow-
ing is similar in nature to the way arguments can be passed in
Swiftlet. Mutable borrows are operationally identical to inout
arguments, and immutable borrows correspond to the way we
optimize pass-by-value semantics. The difference lies in the
way Rust and Swiftlet guarantee soundness. The latter allows
syntactic enforcement of frame-based reasoning, as references
are not surfaced in the user’s programming model, while the
former leverages a more sophisticated type system for the sake
of expressiveness.

Project Valhalla (Simms 2019) is an ongoing effort to bring
inline types into Java. Inline types do not have a default identity,
as opposed to regular objects in Java, and their composition
describes whole/part relationships. Just as our structs, they are
allocated inline (hence the name) to better match the hardware’s
memory model and unlock more aggressive optimizations. In-
line types are, however, immutable. Similar features exist in
a number of "reference-oriented" languages, such as Python,
Kotlin, or Scala, to cite a few.

The C# programming language (Microsoft Corporation
2021) supports mutable value types alongside with reference
types. Their in-memory representation is comparable to the
approach we developed in this paper. One important differ-
ence relates to the interaction between C#’s value types and
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interfaces, the latter being tied to reference semantics, some-
times leading to counter-intuitive situations (Steimann 2021).
Swift addresses that issue with value witnesses, implementing
different copy behaviors for reference types and value types.

Significant effort has been poured into techniques that op-
timize functional updates. One well-established approach is
fusion (Johann 2003), a process aimed at eliminating intermedi-
ate data structures from expressions written as compositions of
functions. Fusion, however, cannot eliminate all intermediate
structures, in particular when they are accessed by multiple
consumers. In that case, allocating and reclaiming temporary
space may incur a significant overhead. Shaikhha et al. (2017)
propose to address this shortcoming by rewriting programs in
a destination passing style to guarantee efficient downstream
stack-like allocation and compile-time garbage collection. In
Swiftlet, intermediate structures can be removed altogether us-
ing inout to perform in-place part-wise mutation, or by relying
on optimizations to substitute aliases for copies (Section 6).

Reinking et al. (2021) advocate for the use of reference
counting as an automatic garbage collection mechanism to al-
low efficient in-place updates of unique data structures, using
borrowed references to reduce reference counter updates (Ull-
rich & de Moura 2019). Unlike our naive implementation of
copy-on-write, their framework is able to generate faster code
paths when reference counts can be tracked statically.

9. Future work
This paper focuses on a single threaded execution model,
yet concurrent and parallel applications have become ubiqui-
tous. Fortunately, MVS offers promising prospects in that area.
Specifically, MVS is immune to data races—a condition in
which two or more threads access the same memory location
concurrently—and provides a simple yet powerful framework
to reason locally about concurrent programs, akin to concur-
rent separation logic (Brookes & O’Hearn 2016). One future
direction is, therefore, to explore implementation strategies that
leverage MVS to support efficient parallelization.

Part of Swift’s concurrency model is based on actors (Agha
1990) with reference semantics. This choice seems appropriate
in light of the vast literature on actor-based concurrency, while
languages such as Pony (Clebsch et al. 2015) or Encore (Bran-
dauer et al. 2015) already present compelling arguments in favor
of type-based aliasing restrictions for memory safety. Nonethe-
less, revisiting concurrency without compromising on the con-
straints of MVS with respect to first-class references is an excit-
ing challenge.

For the sake of conciseness, Swiftlet leaves out protocols,
the construct that Swift uses to define constraints on generic
types (Racordon & Buchs 2020). Protocols, however, present
a number of interesting issues to generate efficient code. One
challenge, in particular, is to choose between monomorphisation
and type erasure (Griesemer et al. 2020). The former approach
involves generating multiple variants of the same generic code,
specialized for different concrete types. The latter involves
settling for a common representation, typically by introducing
indirections (e.g., boxing).

The best solution is likely a clever combination of both ap-
proaches. Hence, extending Swiftlet to study these aspects is
another interesting direction for future work.

10. Conclusion
We discuss implementation strategies to compile programming
languages featuring mutable value semantics, a paradigm that
supports local reasoning by upholding the notion of value and ex-
cluding references from the user’s programming model. These
strategies are inspired by the Swift programming language,
which leverages the benefits of MVS for safety, correctness
and efficiency. To illustrate the details of our implementation,
we introduce Swiftlet, a subset of Swift that focus on features es-
sential for MVS, through a series of informal examples as well
as a formal operational semantics. Swiftlet supports compounds
of heterogeneous data, dynamically sized lists, type-erased con-
tainers, and closures.

We discuss a handful of simple yet efficient static and dy-
namic optimization techniques to eliminate unnecessary copies.
Finally, we evaluate the performance of MVS on a large set of
randomly generated programs with varying numbers of mutat-
ing operations, comparing Swift, Swiftlet, Scala and C++. Our
results provide empirical evidence in favor of MVS. Specifically,
they show that copy-on-write offers compelling performance
gain and they highlight the benefits of in-place, part-wise muta-
tion over functional updates in programs with large number of
writes.

Acknowledgments
The authors would like to thank the reviewers for their helpful
comments and suggestions.

References
Agha, G. A. (1990). Actors - A model of concurrent computation

in distributed systems. MIT Press.
Apple Inc. (2021). The swift programming language. https://

docs.swift.org/swift-book/. (Retrieved September 20, 2021)
Baker, H. G. (1992). Lively linear lisp: "look ma, no

garbage!". ACM SIGPLAN Notices, 27(8), 89–98. Re-
trieved from https://doi.org/10.1145/142137.142162 doi:
10.1145/142137.142162

Baker, H. G. (1994). Linear logic and permutation stacks -
the forth shall be first. SIGARCH Comput. Archit. News,
22(1), 34–43. Retrieved from https://doi.org/10.1145/181993
.181999 doi: 10.1145/181993.181999

Bierema, N. (2022). Immutable.js. https://github.com/
immutable-js/immutable-js. (Retrieved January 10, 2022)

Brandauer, S., Castegren, E., Clarke, D., Fernandez-Reyes,
K., Johnsen, E. B., Pun, K. I., . . . Yang, A. M. (2015).
Parallel objects for multicores: A glimpse at the parallel
language encore. In M. Bernardo & E. B. Johnsen (Eds.),
Formal methods for multicore programming (Vol. 9104, pp.
1–56). New York, NY: Springer. Retrieved from https://
doi.org/10.1007/978-3-319-18941-3_1 doi: 10.1007/978-3
-319-18941-3\_1

Implementation Strategies for Mutable Value Semantics 23

https://docs.swift.org/swift-book/
https://docs.swift.org/swift-book/
https://doi.org/10.1145/142137.142162
https://doi.org/10.1145/181993.181999
https://doi.org/10.1145/181993.181999
https://github.com/immutable-js/immutable-js
https://github.com/immutable-js/immutable-js
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1007/978-3-319-18941-3_1


Brookes, S., & O’Hearn, P. W. (2016). Concurrent separation
logic. ACM SIGLOG News, 3(3), 47–65. Retrieved from
https://dl.acm.org/citation.cfm?id=2984457

Clarke, D., Östlund, J., Sergey, I., & Wrigstad, T. (2013).
Ownership types: A survey. In D. Clarke, J. Noble, &
T. Wrigstad (Eds.), Aliasing in object-oriented programming.
types, analysis and verification (Vol. 7850, pp. 15–58). New
York, NY: Springer. Retrieved from https://doi.org/10.1007/
978-3-642-36946-9_3 doi: 10.1007/978-3-642-36946-9\_3

Clebsch, S., Drossopoulou, S., Blessing, S., & McNeil, A.
(2015). Deny capabilities for safe, fast actors. In E. G. Boix,
P. Haller, A. Ricci, & C. Varela (Eds.), Programming based
on actors, agents, and decentralized control (pp. 1–12). New
York, NY: ACM. Retrieved from https://doi.org/10.1145/
2824815.2824816 doi: 10.1145/2824815.2824816

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., &
Zadeck, F. K. (1991). Efficiently computing static single
assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4),
451–490. Retrieved from https://doi.org/10.1145/115372
.115320 doi: 10.1145/115372.115320

Felleisen, M., Friedman, D. P., Kohlbecker, E. E., & Duba, B. F.
(1987). A syntactic theory of sequential control. Theoretical
Computer Science, 52, 205–237. Retrieved from https://
doi.org/10.1016/0304-3975(87)90109-5 doi: 10.1016/0304
-3975(87)90109-5

Fruja, N. G. (2004). The correctness of the definite assignment
analysis in c#. J. Object Technol., 3(9), 29–52. Retrieved
from https://doi.org/10.5381/jot.2004.3.9.a2 doi: 10.5381/
jot.2004.3.9.a2

Gordon, C. S., Parkinson, M. J., Parsons, J., Bromfield, A.,
& Duffy, J. (2012). Uniqueness and reference immutabil-
ity for safe parallelism. In G. T. Leavens & M. B. Dwyer
(Eds.), Object-oriented programming, systems, languages,
and applications (pp. 21–40). New York, NY: ACM. Re-
trieved from https://doi.org/10.1145/2384616.2384619 doi:
10.1145/2384616.2384619

Griesemer, R., Hu, R., Kokke, W., Lange, J., Taylor, I. L.,
Toninho, B., . . . Yoshida, N. (2020). Featherweight go.
Proc. ACM Program. Lang., 4(OOPSLA), 149:1–149:29. Re-
trieved from https://doi.org/10.1145/3428217 doi: 10.1145/
3428217

Haller, P., & Odersky, M. (2010). Capabilities for uniqueness
and borrowing. In T. D’Hondt (Ed.), European conference on
object-oriented programming (Vol. 6183, pp. 354–378). New
York, NY: Springer. Retrieved from https://doi.org/10.1007/
978-3-642-14107-2_17 doi: 10.1007/978-3-642-14107-2\
_17

Henglein, F., & Jørgensen, J. (1994). Formally optimal boxing.
In H. Boehm, B. Lang, & D. M. Yellin (Eds.), Conference
record of popl’94: 21st ACM SIGPLAN-SIGACT symposium
on principles of programming languages, portland, oregon,
usa, january 17-21, 1994 (pp. 213–226). ACM Press. Re-
trieved from https://doi.org/10.1145/174675.177874 doi:
10.1145/174675.177874

Hutton, G., & Meijer, E. (1998). Monadic parsing in haskell.
J. Funct. Program., 8(4), 437–444. Retrieved from http://

journals.cambridge.org/action/displayAbstract?aid=44175
Jambor, M. (2010). The new intraprocedural scalar replacement

of aggregates. In Proceedings of the gcc developers’ summit
(pp. 47–54).

Johann, P. (2003). Short cut fusion is correct. J. Funct. Program.,
13(4), 797–814. Retrieved from https://doi.org/10.1017/
S0956796802004409 doi: 10.1017/S0956796802004409

Jung, R., Jourdan, J., Krebbers, R., & Dreyer, D. (2018).
Rustbelt: securing the foundations of the rust programming
language. Proc. ACM Program. Lang., 2(POPL), 66:1–
66:34. Retrieved from https://doi.org/10.1145/3158154 doi:
10.1145/3158154

Lattner, C., & Adve, V. S. (2004). LLVM: A compilation
framework for lifelong program analysis & transformation.
In International symposium on code generation and opti-
mization (pp. 75–88). San Jose, CA, USA: IEEE. Re-
trieved from https://doi.org/10.1109/CGO.2004.1281665 doi:
10.1109/CGO.2004.1281665

Leroy, X., & Grall, H. (2009). Coinductive big-step operational
semantics. Inf. Comput., 207(2), 284–304. Retrieved from
https://doi.org/10.1016/j.ic.2007.12.004 doi: 10.1016/j.ic
.2007.12.004

Marr, S., Daloze, B., & Mössenböck, H. (2016). Cross-language
compiler benchmarking: are we fast yet? ACM SIGPLAN
Notices, 52(2), 120–131.

Matsakis, N. D., & Klock, F. S. (2014). The rust language.
In M. Feldman & S. T. Taft (Eds.), Conference on high in-
tegrity language technology, HILT (pp. 103–104). ACM. Re-
trieved from https://doi.org/10.1145/2663171.2663188 doi:
10.1145/2663171.2663188

McCall, J. (2017). Swift ownership manifesto.
https://github.com/apple/swift/blob/main/docs/OwnershipManifesto.md.
(Retrieved Jan 9, 2022)

Microsoft Corporation. (2021). C# documentation. https://docs
.microsoft.com/en-us/dotnet/csharp/. (Retrieved September
20, 2021)

Naden, K., Bocchino, R., Aldrich, J., & Bierhoff, K. (2012).
A type system for borrowing permissions. In J. Field &
M. Hicks (Eds.), Principles of programming languages (pp.
557–570). New York: ACM. Retrieved from https://doi.org/
10.1145/2103656.2103722 doi: 10.1145/2103656.2103722

Noble, J., Vitek, J., & Potter, J. (1998). Flexible alias protection.
In E. Jul (Ed.), Ecoop’98 - object-oriented programming, 12th
european conference, brussels, belgium, july 20-24, 1998,
proceedings (Vol. 1445, pp. 158–185). Springer. Retrieved
from https://doi.org/10.1007/BFb0054091 doi: 10.1007/
BFb0054091

Odersky, M., & Moors, A. (2009). Fighting bit rot with
types (experience report: Scala collections). In R. Kan-
nan & K. N. Kumar (Eds.), Foundations of software tech-
nology and theoretical computer science (Vol. 4, pp. 427–
451). Saarland, Germany: Schloss Dagstuhl - Leibniz-
Zentrum für Informatik. Retrieved from https://doi.org/
10.4230/LIPIcs.FSTTCS.2009.2338 doi: 10.4230/LIPIcs
.FSTTCS.2009.2338

O’Hearn, P. W., Reynolds, J. C., & Yang, H. (2001). Local
reasoning about programs that alter data structures. In L. Fri-

24 Racordon et al.

https://dl.acm.org/citation.cfm?id=2984457
https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1016/0304-3975(87)90109-5
https://doi.org/10.1016/0304-3975(87)90109-5
https://doi.org/10.5381/jot.2004.3.9.a2
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/3428217
https://doi.org/10.1007/978-3-642-14107-2_17
https://doi.org/10.1007/978-3-642-14107-2_17
https://doi.org/10.1145/174675.177874
http://journals.cambridge.org/action/displayAbstract?aid=44175
http://journals.cambridge.org/action/displayAbstract?aid=44175
https://doi.org/10.1017/S0956796802004409
https://doi.org/10.1017/S0956796802004409
https://doi.org/10.1145/3158154
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1145/2663171.2663188
https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://doi.org/10.1145/2103656.2103722
https://doi.org/10.1145/2103656.2103722
https://doi.org/10.1007/BFb0054091
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2338
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2338


bourg (Ed.), Computer science logic (Vol. 2142, pp. 1–19).
New York, NY: Springer. Retrieved from https://doi.org/
10.1007/3-540-44802-0_1 doi: 10.1007/3-540-44802-0\_1

O’Neill, M. E. (2009). The genuine sieve of eratosthenes.
Journal of Functional Programming, 19(1), 95–106. Re-
trieved from https://doi.org/10.1017/S0956796808007004
doi: 10.1017/S0956796808007004

Pierce, B. C. (2002). Types and programming languages (1st
ed.). The MIT Press.

Potanin, A., Östlund, J., Zibin, Y., & Ernst, M. D. (2013).
Immutability. In D. Clarke, J. Noble, & T. Wrigstad (Eds.),
Aliasing in object-oriented programming. types, analysis and
verification (Vol. 7850, pp. 233–269). Berlin: Springer. Re-
trieved from https://doi.org/10.1007/978-3-642-36946-9_9
doi: 10.1007/978-3-642-36946-9\_9

R Core Team. (2020). R: A language and environment for
statistical computing [Computer software manual]. Vienna,
Austria. Retrieved from https://www.R-project.org/

Racordon, D., & Buchs, D. (2020). Featherweight swift: a core
calculus for swift’s type system. In R. Lämmel, L. Tratt, &
J. de Lara (Eds.), Proceedings of the 13th ACM SIGPLAN
international conference on software language engineering,
SLE 2020, virtual event, usa, november 16-17, 2020 (pp.
140–154). ACM. Retrieved from https://doi.org/10.1145/
3426425.3426939 doi: 10.1145/3426425.3426939

Reinking, A., Xie, N., de Moura, L., & Leijen, D. (2021).
Perceus: garbage free reference counting with reuse. In
S. N. Freund & E. Yahav (Eds.), PLDI ’21: 42nd ACM SIG-
PLAN international conference on programming language
design and implementation, virtual event, canada, june 20-25,
20211 (pp. 96–111). ACM. Retrieved from https://doi.org/
10.1145/3453483.3454032 doi: 10.1145/3453483.3454032

Reynolds, J. C. (1998a). Definitional interpreters for higher-
order programming languages. Higher-Order and Sym-
bolic Computation, 11(4), 363–397. doi: 10.1023/A:
1010027404223

Reynolds, J. C. (1998b). Theories of programming languages.
Cambridge University Press.

Reynolds, J. C. (2002). Separation logic: A logic for shared
mutable data structures. In 17th IEEE symposium on logic in
computer science (LICS 2002), 22-25 july 2002, copenhagen,
denmark, proceedings (pp. 55–74). IEEE Computer Society.
Retrieved from https://doi.org/10.1109/LICS.2002.1029817
doi: 10.1109/LICS.2002.1029817

Rytz, L., Amin, N., & Odersky, M. (2013). A flow-insensitive,
modular effect system for purity. In W. Dietl (Ed.), Formal
techniques for java-like programs (pp. 4:1–4:7). New York,
NY: ACM. Retrieved from https://doi.org/10.1145/2489804
.2489808 doi: 10.1145/2489804.2489808

Saeta, B., Shabalin, D., Rasi, M., Larson, B., Wu, X., Schuh, P.,
. . . Wei, R. (2021). Swift for tensorflow: A portable, flexible
platform for deep learning.

Shabalin, D. (2020). Just-in-time performance without warm-up
(Tech. Rep.). Lausanne, Swizerland: EPFL.

Shaikhha, A., Fitzgibbon, A. W., Jones, S. P., & Vytiniotis,
D. (2017). Destination-passing style for efficient memory
management. In P. Trinder & C. E. Oancea (Eds.), Proceed-

ings of the 6th ACM SIGPLAN international workshop on
functional high-performance computing, fhpc@icfp 2017,
oxford, uk, september 7, 2017 (pp. 12–23). ACM. Re-
trieved from https://doi.org/10.1145/3122948.3122949 doi:
10.1145/3122948.3122949

Siek, J., Lee, L.-Q., & Lumsdaine, A. (2002). The boost graph
library: User guide and reference manual. USA: Addison-
Wesley Longman Publishing Co., Inc.

Simms, D. (2019). Valhalla. https://wiki.openjdk.java.net/
display/valhalla. (Retrieved September 20, 2021)

Smith, F., Walker, D., & Morrisett, G. (2000). Alias types.
In G. Smolka (Ed.), Programming languages and systems,
9th european symposium on programming, ESOP 2000, held
as part of the european joint conferences on the theory and
practice of software, ETAPS 2000, berlin, germany, march
25 - april 2, 2000, proceedings (Vol. 1782, pp. 366–381).
Berlin: Springer. Retrieved from https://doi.org/10.1007/
3-540-46425-5_24 doi: 10.1007/3-540-46425-5\_24

Steimann, F. (2021). The kingdoms of objects and values. In
Onward! ACM.

Stepanov, A., & McJones, P. (2009). Elements of programming
(1st ed.). Boston, MA: Addison-Wesley Professional.

Stepanov, A., & Rose, D. E. (2014). From mathematics to
generic programming (1st ed.). Boston, MA: Addison-Wesley
Professional.

Strachey, C. S. (2000). Fundamental concepts in programming
languages. High. Order Symb. Comput., 13(1/2), 11–49. Re-
trieved from https://doi.org/10.1023/A:1010000313106 doi:
10.1023/A:1010000313106

Stucki, N., Rompf, T., Ureche, V., & Bagwell, P. (2015). RRB
vector: a practical general purpose immutable sequence. In
K. Fisher & J. H. Reppy (Eds.), Proceedings of the 20th ACM
SIGPLAN international conference on functional program-
ming, ICFP 2015, vancouver, bc, canada, september 1-3,
2015 (pp. 342–354). ACM. Retrieved from https://doi.org/
10.1145/2784731.2784739 doi: 10.1145/2784731.2784739

Tofte, M., Birkedal, L., Elsman, M., & Hallenberg, N. (2004). A
retrospective on region-based memory management. Higher-
Order and Symbolic Computation, 17(3), 245–265. Retrieved
from https://doi.org/10.1023/B:LISP.0000029446.78563.a4
doi: 10.1023/B:LISP.0000029446.78563.a4

Tov, J. A., & Pucella, R. (2011). Practical affine types. In
T. Ball & M. Sagiv (Eds.), Proceedings of the 38th ACM
SIGPLAN-SIGACT symposium on principles of programming
languages, POPL 2011, austin, tx, usa, january 26-28, 2011
(pp. 447–458). ACM. Retrieved from https://doi.org/10.1145/
1926385.1926436 doi: 10.1145/1926385.1926436

Turner, J. (2017). Rust 2017 survey results. https://blog.rust
-lang.org/2017/09/05/Rust-2017-Survey-Results.html. (Re-
trieved April 8, 2021)

Ullrich, S., & de Moura, L. (2019). Counting immutable
beans: reference counting optimized for purely functional
programming. In J. Stutterheim & W. Chin (Eds.), IFL ’19:
Implementation and application of functional languages, sin-
gapore, september 25-27, 2019 (pp. 3:1–3:12). ACM. Re-
trieved from https://doi.org/10.1145/3412932.3412935 doi:
10.1145/3412932.3412935

Implementation Strategies for Mutable Value Semantics 25

https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1017/S0956796808007004
https://doi.org/10.1007/978-3-642-36946-9_9
https://www.R-project.org/
https://doi.org/10.1145/3426425.3426939
https://doi.org/10.1145/3426425.3426939
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/2489804.2489808
https://doi.org/10.1145/2489804.2489808
https://doi.org/10.1145/3122948.3122949
https://wiki.openjdk.java.net/display/valhalla
https://wiki.openjdk.java.net/display/valhalla
https://doi.org/10.1007/3-540-46425-5_24
https://doi.org/10.1007/3-540-46425-5_24
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1145/2784731.2784739
https://doi.org/10.1145/2784731.2784739
https://doi.org/10.1023/B:LISP.0000029446.78563.a4
https://doi.org/10.1145/1926385.1926436
https://doi.org/10.1145/1926385.1926436
https://blog.rust-lang.org/2017/09/05/Rust-2017-Survey-Results.html
https://blog.rust-lang.org/2017/09/05/Rust-2017-Survey-Results.html
https://doi.org/10.1145/3412932.3412935


Vitek, J., & Bokowski, B. (2001). Confined types in java. Soft-
ware: Practice and Experience, 31(6), 507–532. Retrieved
from https://doi.org/10.1002/spe.369 doi: 10.1002/spe.369

Wadler, P. (1990). Linear types can change the world! In
M. Broy & C. B. Jones (Eds.), Programming concepts and
methods (p. 561). Amsterdam, Netherlands: North-Holland.

Weiss, A., Patterson, D., Matsakis, N. D., & Ahmed, A. (2019).
Oxide: The essence of rust. CoRR, abs/1903.00982. Re-
trieved from http://arxiv.org/abs/1903.00982

Wright, A. K., & Felleisen, M. (1994). A syntactic approach to
type soundness. Information and Computation, 115(1), 38–
94. Retrieved from https://doi.org/10.1006/inco.1994.1093
doi: 10.1006/inco.1994.1093

About the authors
Dimitri Racordon is a post-doctoral researcher at the Univer-
sity of Geneva in Switzerland, and Northeastern University in
the United States. His current research focuses on type-based
approaches to memory safety, as well as language designs for
safe and efficient concurrency. You can contact him at dim-
itri.racordon@unige.ch or visit https://kyouko-taiga.github.io.

Denys Shabalin is a software engineer at Google Research. His
current research focuses on applying programming language
research techniques to systems and compilers for machine learn-
ing. You can contact him at shabalin@google.com.

Daniel Zheng is a software engineer at Google Research. Pre-
viously, he worked in programming languages for machine
learning on the Swift for TensorFlow project, focusing on dif-
ferentiable programming for Swift. Currently, he works on
machine learning for source code. You can contact him at
danielzheng@google.com or visit https://danzheng.me.

Dave Abrahams is a Principal Scientist at Adobe’s Software
Technology Lab. He is a contributor to the C++ standard, a
founding contributor to the Boost C++ library and a key de-
signer of the Swift programming language. Before joining
Adobe, he spent two years at Google extending Swift for ma-
chine learning with Swift for TensorFlow, and before that, seven
years at Apple creating Swift and SwiftUI. You can contact him
at dave@boostpro.com.

Brennan Saeta is a software engineer at Google Research. He
previously led the Swift for TensorFlow project which explored
customizing programming languages for machine learning. Cur-
rently, he works on JAX, a library for machine learning. You
can contact him at saeta@google.com.

A. Proof of type soundness
We describe a handful of supporting lemma. The first states
that if a path ai does not overlap another path aj in some typ-
ing context Γ, then they cannot denote overlapping memory
locations.

Lemma A.1. Let π; η be a well-formed memory state such
that ∆ ` π; η : Γ. Let a1 and a2 be two well-typed argument
expressions such that ∆; Γ; π ` a1 : τ1 and ∆; Γ; π ` a2 : τ2.
If ∆ ` π; η; ai −→ π; η; li, and ∆ ` π; η; aj −→ π; η; li, then
ai 6⊆ aj =⇒ acc(π, li) ∩ acc(π, lj) = ∅.

Proof of Lemma A.1. The proof is obvious from the fact that
paths denote roots of tree-shaped data structures, and that well-
formed memory state preserve the uniqueness of each binding.
Hence, the location denoted by the root xi of a path cannot
overlap with that of another root xj. It follows that, unless
ai ⊆ aj, ai cannot denote an ancestor of aj.

The next lemmas state that copying a value preserves its type
and the well-typedness of a program state.

Lemma A.2. If ∆; Γ; π ` v : τ and π′, v′ = copy(π, v) then
∆; Γ; π′ ` v′ : τ.

Proof of Lemma A.2. By induction on the recursive definition
of copy(π, v).

Lemma A.3. If ∆; Γ; π ` v : τ, and ∆ ` π; η : Γ, and
π′, v′ = copy(π, v) then ∆ ` π′; η : Γ.

Proof of Lemma A.3. By induction on the recursive definition
of copy(π, v) and the fact that copy preserves well-typedness.

The typing semantics from Section 4.4 does not have any
rule for pop expressions, since those are only defined in the
small-step semantics. To prove soundness inductively, though,
we must define an additional rule:

T-POP
∆; Γ ` e : τ

∆; Γ ` epop l : τ

Finally, we prove progress and preservation.

Proof of Lemma 4.1. The proof is by induction on the typing
derivation of e.

case v: Trivial, v is a value.

case r: The type derivation is governed by T-READ and must
have the form

∆; Γ `path r : m τ

∆; Γ ` r : τ

There are three sub-cases to consider:

sub-case x: The typing derivation is governed by
T-BINDINGREF. By the fact that ∆ ` π; η : Γ, we
know that x ∈ dom(η1). Then by ESS-NAME we
have ∆ ` π; η; x −→ π′; η; v.

sub-case e1[e2]: The typing derivation is governed by
T-LETELEMREF or T-VARELEMREF. By the fact that
∆ ` π; η : Γ, we know that e1 : [τ] and e2 : Z. Then,
there are four situations to consider:
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1. If e1 and e2 are values, then e1 is an array in-
stance of the form [l1, . . . , lk]. If e2 is a number
c such that 0 ≤ c < k, then by E-ELEM we have
∆ ` π; η; [l][c] −→ π′; η; v.

2. If e1 and e2 are values, but e2 is not a number, or
is not in the range 0 ≤ c < k, then the evaluation
is stuck at an invalid array subscript.

3. If e1 is a value but e2 is not, then by
ESS-CONTEXT we have ∆ ` π; η; v[e2] −→
π′; η′; v[e′2].

4. If e1 is not a value, then by ESS-CONTEXT we
have ∆ ` π; η; e1[e2] −→ π′; η′; e′1[e2].

sub-case e.x: The typing derivation is governed by
T-LETPROPREF or T-VARPROPREF. By the fact that
∆ ` π; η : Γ, we know that e : s and s is a field of s.

1. If e1 is a value, then it is a structure instance
of the form [l]s and by ESS-PROP we have ∆ `
π; η; [l]s.x −→ π′; η′; v.

2. If e1 is not a value, then by ESS-CONTEXT we
have ∆ ` π; η; e.x −→ π′; η′; e′.x.

case [e]: The typing derivation is governed by T-ARRAYLIT.

1. If all elements in e are values, then by ESS-ARRAYLIT

we have ∆ ` π; η; [v] −→ π′; η′; [l].
2. If there exists ei that is not a value, then we know that

ej for all 1 ≤ j < i are values and by ESS-CONTEXT

we have ∆ ` π; η; [v1, . . . , vi−1, ei, ei+1 . . . ek] −→
π′; η′; [v1, . . . , vi−1, e′, ei+1 . . . ek]

case s(e1, . . . , ek): The typing derivation is governed by
T-STRUCTLIT. By the fact that ∆; Γ; π ` s(e) : τ, we
know that struct s{m1 x1 : τ1, . . . , mk xk : τk} ∈ ∆.

1. If all elements e1, . . . , ek are values, then by
ESS-STRUCTLIT we have ∆ ` π; η; s(v) −→
π′; η′; [l]s.

2. If there exists ei that is not a value, then
we know that ej for all 1 ≤ j < i
are values, and by ESS-CONTEXT we have
∆ ` π; η; s(v1, . . . , vi−1, ei, ei+1 . . . ek) −→
π′; η′; s(v1, . . . , vi−1, e′i , ei+1 . . . ek)

case func x0(x : p)→ τλ {[y1, . . . , yh] in e1} in e2: The typ-
ing derivation is governed by T-FUNC. By the fact that ∆ `
π; η : Γ, we know that {y1, . . . , yh} ∈ dom(η). Therefore
mkenv(π, y1 : η(y1), . . . , yh : η(yh)) is defined. Then
by ESS-FUNCLIT we have ∆ ` π; η; func x0(x : p) →
τλ {[y1, . . . , yh] in e1} in e2 −→ π′′; µ′′, η; e2; pop l

case e(a1, . . . , ak): The typing derivation is governed by
T-CALL. We know that e : (p1, . . . , pk) → τ. Further, by
Lemma A.1 and the fact that ∆; Γ; π ` e(a1, . . . , ak) : τ,
we know that inout arguments do not denote overlapping
memory locations.

1. If e is a value λ(x : p, ηλ, eλ), then by induction
hypothesis, for all elements ai, either ai is a value, or
the program can take a step.

(a) If all arguments a1, . . . , ak are values, then
by ESS-CALL we have ∆ ` π; η; v0(v) −→
π′; η′, η′; eλ; pop {li | i ∈ Icpy}.

(b) If there exists ai that is not a value, then we
know that aj for all 1 ≤ j < i are values and
the type derivation for ai must have either of the
following form, depending on whether ai is a
regular argument e or an inout argument &r.

∆; Γ ` e : τ

∆; Γ `arg e : τ

∆; Γ `path r : var τ

∆; Γ `arg &r : inout τ

i. If ai ≡ e, then by induction hypothesis e
takes a step.

ii. If ai ≡ &r, and r is a location, then by
ESS-INOUT applies.

iii. If ai ≡ &r, and r is not a location, then r
takes a step via −→lv.

In all cases, by ESS-CONTEXT we have
∆ ` π; η; v0(v1, . . . , vi−1, ei, ei+1 . . . ek) −→
π′; η′; v0(v1, . . . , vi−1, e′i , ei+1 . . . ek)

2. If e is not a value, then by ESS-CONTEXT we have
∆ ` π; η; e(a) −→ π′; η′; e′(a).

case b = ex in e: The typing derivation is governed by
T-BINDING.

1. If ex is a value, then by ESS-BINDING we have ∆ `
π; η; b = v in e −→ π′; η′; e; pop l.

2. If ex is not a value, then by ESS-CONTEXT we have
∆ ` π; η; b = ex in e −→ π′; η′; b = e′x; e.

case r = er: The typing derivation is governed by T-ASSIGN

and must have the form

∆; Γ ` er : τ ∆; Γ `path r : var τ

∆; Γ ` r = er : [⊥]

There are three situations to consider:

1. If er is a value and r is a location, then by
ESS-ASSIGN we have ∆ ` π; η; var l = v −→
π′; η′().

2. If er is not a value and r is a location, then by
ESS-CONTEXT we have ∆ ` π; η; var l = er −→
π′; η′; var l = e′r.

3. If r is not a location, then we have ∆ ` π; η; r =
e1 −→lv π′; η′; r′ = e1.

case e1 ? e2 : e3: The typing derivation is governed by
T-COND. There three two cases to consider.

1. If e1 is a value different than 0, then by ESS-COND-T
we have ∆ ` π; η; v ? e2 : e3 −→ π; η; e2.

2. If e1 is the value 0, then by ESS-COND-F we have
∆ ` π; η; 0 ? e2 : e3 −→ π; η; e3.

3. If e1 is not a value, then by ESS-CONTEXT we have
∆ ` π; η; e1 ? e2 : e3 −→ π′; η′; e′1 ? e2 ! e3.
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case e; pop l: The typing derivation is governed by T-POP.
There are two cases to consider.

1. If e, then ESS-POP we have ∆ ` π; η, etav; pop l −→
π′; η; v.

2. If e is not a value, then ESS-POP we have ∆ `
π; η, etae; pop l −→ π′; η′; e′; pop l.

case e1; e2: The typing derivation is governed by T-SEQ. There
are two situations to consider:

1. If e1 is a value, then by ESS-SEQ we have ∆ `
π; v; e2 −→ π; η; e2.

2. If e1 is not a value, then by ESS-CONTEXT we have
∆ ` π; e1; e2 −→ π′; η′; e′1; e2.

case e as τ: The typing derivation is governed by T-CAST.
There are four situations to consider:

1. If e1 is a value and τ = Any, then by ESS-UPCAST

we have ∆ ` π; v as Any −→ π; η; box(l).

2. If e1 is a value box(l) and τ 6= Any and
typeof (v) = τ, then by ESS-DOWNCAST we have
∆ ` π; v as τ −→ π′; η; v, where v′ is a copy of the
value at l.

3. If e1 is a value box(l) and τ 6= Any but typeof (v) 6=
τ, then evaluation is stuck at an invalid downcast.

4. If e1 is not a value, then by ESS-CONTEXT we have
∆ ` π; e1 as τ −→ π′; η′; e′1.

Proof of Lemma 4.2. The proof is by induction on the typing
derivation of e.

case r: The type derivation is governed by T-READ and must
have the form

∆; Γ `path r : m τ

∆; Γ ` r : τ

There are three sub-cases to consider:

sub-case x: The typing derivation is governed by
T-BINDINGREF and we know that e steps with
ESS-NAME. We pick Γ′ = Γ. Since π; η is well-
typed in Γ, we know that π(η1(x)) = m v and
∆; Γ; π ` v : τ, then by Lemma A.2 we have
∆; Γ′; π′ ` v′ : τ. Furthermore, by Lemma A.3
we have ∆ ` π′; η : Γ′.

sub-case e1[e2]: The typing derivation is governed by
T-LETELEMREF or T-VARELEMREF. Both state that
we have the derivations ∆; Γ ` e1 : [τ] and ∆; Γ `
e2 : Z. Since we know that e1[e2] steps by assump-
tion, there are only three situations to consider:

1. If e1 and e2 are values, then e1 is an array in-
stance of the form [l1, . . . , lk], and e2 is a num-
ber c such that 0 ≤ c < k, and e1[e2] steps
with ESS-ELEM. We pick Γ′ = Γ. We know
that π(lc) = m v and ∆; Γ; π ` v : τ, then by

Lemma A.2 we have ∆; Γ′; π′ ` v′ : τ. Further-
more, by Lemma A.3 we have ∆ ` π′; η : Γ′.

2. If e1 is a value but e2 is not, then by induction
hypothesis e2 takes a step, its type is preserved,
and the resulting program state is well-typed.

3. If e1 is not a value, then by induction hypothesis
e1 takes a step, its type is preserved, and the
resulting program state is well-typed.

sub-case e.x: The typing derivation is governed by
T-LETPROPREF or T-VARPROPREF. Both state that
we have the derivations ∆; Γ ` e : s. Further, since
e.x is well-typed by assumption, s denotes a defini-
tion struct s{m x : τ} and there exists xi = x.

1. If e is a value, then e is an structure instance of
the form [l]s and we know that e.x steps with
ESS-PROP. We pick Γ′ = Γ. We know that
π(li) = m v and ∆; Γ; π ` v : τ, then by
Lemma A.2 we have ∆; Γ′; π′ ` v′ : τ. Further-
more, by Lemma A.3 we have ∆ ` π′; η : Γ′.

2. If e is not a value, then by induction hypothesis
e takes a step and its type is preserved.

case [e]: The typing derivation is governed by T-ARRAYLIT.
Since [e] is well-typed by assumption, all elements have
type τ.

1. If all elements in e are values, then we know that
[e] steps with ESS-ARRAYLIT. We pick Γ′ = Γ. We
know that all elements in e are values of type τ, then
∆; Γ; π′ ` [l] : [τ], as requested. Furthermore, since
l 6∈ dom(π), [l] is an independent value in π′ and
we have ∆ ` π′; η : Γ′.

2. If there exists ei that is not a value, then by induction
hypothesis ei takes a step and its type is preserved.

case s(e): The typing derivation is governed by T-STRUCTLIT.
Since s(e) is well-typed by assumption, s denotes a def-
inition struct s{m x : τ} and each argument ei has type
τi.

1. If all elements in e are values, then we know that
s(e) steps with ESS-STRUCTLIT. We pick Γ′ = Γ.
We know that all elements in e are well-typed with
respect to s’s definition, then ∆; Γ; π′ ` [l]s : s, as
requested. Furthermore, since l 6∈ dom(π), [l]s is an
independent value in π′ and we have ∆ ` π′; η : Γ′.

2. If there exists ei that is not a value, then by induction
hypothesis ei takes a step and its type is preserved.

case func x0(x : p)→ τλ {[y1, . . . , yh] in e1} in e2: The typ-
ing derivation is governed by T-FUNC and evaluation steps
with ESS-FUNC.

1. If e2 is a value, we pick Γ′ = Γ[x0 7→ (p) → τλ]
and we have ∆; Γ′; π′′ ` v : τ, as requested.

2. If e2 is not a value, then by induction hypothesis e2
takes a step and its type is preserved.
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case e(a) : The typing derivation is governed by T-CALL. Since
e(a) is well-typed by assumption, e has type (p)→ τ and
each argument ai has type pi.

1. If e is a value, then e is a function object of the form
λ(x : p, ηλ, eλ). Then the evaluation steps depends
on the arguments:

(a) If all elements in a are values, then we know that
e(a) steps with ESS-CALL.

– We pick Γ′ such that each parameter name
xi is mapped onto its type pi, either mutably
if pi = inout τi for some τi, or immutably
otherwise, and each name in dom(ηλ) is
mapped onto its type and mutability in π.

– Since e is well-typed by assumption,
we know that ∆ ` π; η; e(a) −→
π′; η′, η; eλ; pop l. We assume ∆; Γ′; η′ `
eλ; pop l holds by induction.

– Finally we must show that ∆ ` π′; ηλ, η : Γ.
Since e is well-typed, the free in eλ are argu-
ments in x, inserted in Γ′ using the argument
list.

Furthermore, since ESS-CALL checks for
uniqueness of inout arguments, we know that
parameter name is either mapped onto a new
location in π′ or its location cannot overlap
with another location in π′. Hence, we have
∆ ` π′; η′, η : Γ′.

(b) If there exists ai that is not a value, then we
know that aj for all 1 ≤ j < i are values and
the type derivation for ai must have either of the
following form, depending on whether ai is a
regular argument e or an inout argument &r.

∆; Γ ` e : τ

∆; Γ `arg e : τ

∆; Γ `path r : var τ

∆; Γ `arg &r : inout τ

i. If ai ≡ e, then by induction hypothesis e
takes a step and its type is preserved.

ii. If ai ≡ &r, and r is a location, then
ESS-INOUT applies and r’s type is pre-
served.

iii. If ai ≡ &r, and r is not a location, then r
takes a step via −→lv and r’s type is pre-
served.

In all cases, e(a) takes a step and its type is
preserved.

2. If e is not a value, then by induction hypothesis e
takes a step and its type is preserved.

case b = e1 in e2 : The typing derivation is governed by
T-BINDING.

1. If e1 is a value, then we know that m x : τ = e1 in e2
steps with ESS-BINDING.

– We pick Γ′ = Γ[x 7→ m τ].

– We assume ∆; Γ′; π′ ` e2 : τ by induction.
– Finally we must show that ∆ ` π′; η′, η : Γ′.

We know that dom(π′) \ dom(π) = {l}, and
π′(l) = m v1. We know that ∆ ` π; η, η : Γ
by assumption, therefore we can show that ∆ `
π′; η′, η : Γ′ holds.

2. If e1 that is not a value, then by induction hypothesis
e1 takes a step and its type is preserved.

case r = er: The typing derivation is governed by T-ASSIGN

and must have the form

∆; Γ ` er : τ ∆; Γ `path r : var τ

∆; Γ ` r = er : ()

There are three situations to consider:

1. If er is a value and r is a location, then we know
that r = er steps with ESS-ASSIGN. We know that
r has type var τ and e has type mτ by assumption,
therefore the typing context does not change. We
pick Γ′ = Γ and we have ∆; Γ; π ` r = er : (), as
requested.

2. If e1 is not a value and r is a location, then by in-
duction hypothesis e1 takes a step and its type is
preserved.

3. If r is not a location, then r takes a step via−→lv and
its type is preserved.

case e1 ? e2 : e3: The typing derivation is governed by
T-COND.

1. If e1 is a value different than 0, then e1 ? e2 : e3
takes a step with ESS-COND-T. We pick Γ′ = Γ and
we have ∆; Γ; π ` e2 : τ, as requested.

2. If e1 is the value 0, then e1 ? e2 : e3 takes a step
with ESS-COND-F. We pick Γ′ = Γ and we have
∆; Γ; π ` e3 : τ, as requested.

3. If e1 is not a value, then by induction hypothesis e1
takes a step and its type is preserved.

case e; pop l: The typing derivation is governed by T-POP.
There are two situations to consider:

1. If e is a value, then e; pop l takes a step with ESS-POP.
We pick Γ′ = Γ and we have ∆; Γ′; π ` v : τ, as
requested.

2. If e is not a value, then by induction hypothesis e
takes a step and its type is preserved.

case e1; e2: The typing derivation is governed by T-SEQ. There
are two situations to consider:

1. If e1 is a value, then v; e2 takes a step with ESS-SEQ.
We pick Γ′ = Γ and we have ∆; Γ′; π ` e2 : τ, as
requested.

2. If e1 is not a value, then by induction hypothesis e1
takes a step and its type is preserved.
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case e as τ: The typing derivation is governed by T-CAST.
There are three situations to consider:

1. If v is a value and τ = Any, we pick Γ′ = Γ and we
have ∆; Γ′; π ` v : Any, as requested.

2. If v is a value and τ 6= Any and typeof (v) = τ,
we pick Γ′ = Γ and we have ∆; Γ′; π ` v : τ, as
requested.

3. If e is not a value, e takes a step and the type of e as τ
is preserved.
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